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ABSTRACT  ARTICLE INFO 

Optimization of one-dimensional functions is fundamental in 
mathematical modeling, engineering, and scientific computation. Many 
classical methods require derivative information, which is often 
unavailable, costly, or unreliable in practical problems. This paper 
addresses this challenge by focusing on the Golden Section Search (GSS) 
method, a classical derivative-free technique known for its simplicity, 
robustness, and efficiency in locating minima or maxima of unimodal 
functions within bounded intervals. Despite widespread use, 
comprehensive consolidation of GSS’s theoretical foundations and 
practical implementation remains limited. This study aims to formalize the 
mathematical basis of GSS, analyze its convergence properties, and 
present detailed, step-by-step algorithms for practical use. The paper 
reviews necessary and sufficient conditions for extrema, including 
Fermat’s theorem and higher-order derivatives, and defines unimodality, 
emphasizing its importance for GSS’s success. The algorithm’s geometric 
basis, iterative interval reduction using the golden ratio, and stopping 
criteria based on tolerance levels are discussed. The method’s validity and 
efficiency are demonstrated via numerical examples involving nonlinear 
and transcendental functions, confirming its reliability without derivative 
computations. A comparative analysis highlights GSS’s advantages, 
including guaranteed convergence and low computational cost, while 
acknowledging its limitations. Finally, the study discusses practical 
implications and suggests future research directions, including extensions 
to multimodal functions and higher-dimensional optimization problems, 
enhancing the applicability of derivative-free methods in various scientific 
and engineering fields. 
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INTRODUCTION 

Optimization plays a vital and foundational role in mathematics, engineering, and a broad 

spectrum of applied sciences, where determining the best possible outcomes or 

configurations under given constraints is critical for both theoretical analysis and real-world 

applications. Whether the goal is to minimize cost, maximize efficiency, or balance 

competing objectives, optimization offers a structured framework for decision-making and 

problem-solving. Among its many branches, one-dimensional optimization stands out as a 
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fundamental technique that focuses on locating the minimum or maximum of a real-valued 

function over a closed and bounded interval. This is particularly useful when the function 

under consideration is unimodal—i.e., it has a single extremum (minimum or maximum) 

within the interval—which simplifies the search process and allows for efficient algorithmic 

approaches. 

Such optimization problems commonly arise in diverse settings, including but not limited 

to the calibration of physical models, resource allocation in economics, the design of 

engineering systems, and the tuning of hyperparameters in machine learning algorithms. For 

instance, engineers may seek to minimize material usage while maintaining structural 

integrity, or economists may aim to identify profit-maximizing price points within 

competitive markets. In each of these domains, solving one-dimensional optimization 

problems contributes to improved performance, cost-effectiveness, and innovation. 

The motivation for this study arises from the increasing demand for optimization 

methods that are both efficient and do not require derivative information, especially in 

contexts where derivative calculations are complicated, expensive, or impossible. Traditional 

analytical optimization techniques, such as those relying on gradient or Hessian information, 

are highly effective when the function is smooth and differentiable; however, many real-

world problems involve functions that are complex, noisy, discontinuous, or non-

differentiable, which severely limits the applicability of these methods(Adby & Dempster, 

1982). In such cases, derivative-free methods provide a practical and robust alternative. 

Among these, the Golden Section Search (GSS) Method stands out as a classical numerical 

approach that leverages the unique properties of the golden ratio to iteratively reduce the 

search interval for the minimum of a unimodal function(Chen et al., 2022). This algorithm’s 

geometric foundation ensures that each iteration eliminates a fixed proportion of the search 

interval, maintaining efficiency and guaranteeing convergence without requiring gradient 

evaluations (Raj et al., 2022). The GSS method has thus gained prominence in scenarios 

ranging from engineering design to financial modeling, where derivative information may be 

unreliable or computationally prohibitive to obtain. Consequently, the method presents an 

attractive balance between simplicity, reliability, and computational cost, motivating its 

detailed study and application in this research (Noroozi et al., 2022).  

The objective of this study is to comprehensively explore the theoretical framework 

underpinning one-dimensional optimization techniques, with a particular focus on the 

Golden Section Search Method(Nocedal & Wright, 2006). This includes an in-depth analysis 

of the mathematical characteristics that define extrema, such as necessary and sufficient 

conditions involving first and second derivatives, as well as a detailed examination of 

unimodality, which ensures the existence of a unique minimum or maximum within a given 

interval (Nocedal & Wright, 2006). Understanding these foundational concepts is crucial, as 

the assumption of unimodality underpins the effectiveness and convergence guarantees of 

the Golden Section Search. The method relies on the property that the function’s behavior is 

single-peaked or single-troughed, allowing for systematic interval reduction without missing 
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the global extremum. Furthermore, this study aims to bridge the gap between theoretical 

insight and practical application by demonstrating the method through a concrete numerical 

example. This example serves to illustrate not only the algorithmic steps but also the 

convergence behavior and computational efficiency of the Golden Section Search in real-

world scenarios. Such a thorough approach ensures that the method’s strengths and 

limitations are clearly articulated, providing a solid foundation for researchers and 

practitioners interested in derivative-free optimization strategies(Du et al., 2022). 

In terms of methodology, the study begins with a rigorous review of the necessary and 

sufficient conditions for identifying extrema in differentiable functions. This involves a 

detailed examination of the role of the first derivative—where a zero derivative indicates a 

critical point—and the second derivative test, which helps distinguish between minima, 

maxima, and points of inflection (Balerna et al., 1975). Understanding these derivative-based 

criteria is essential for characterizing the behavior of functions and lays the groundwork for 

subsequent discussions on optimization. The study then transitions to the concept of 

unimodality, which is a pivotal assumption for the Golden Section Search method. 

Unimodality implies that the function has a single peak or trough within the search interval, 

ensuring that interval reduction techniques will reliably converge to the global extremum 

without being trapped in local minima (Montiel-Arrieta et al., 2023). To establish this, 

mathematical conditions and examples of unimodal functions are discussed, highlighting 

their relevance and practical occurrence in applied problems. Finally, the core of the 

methodology involves the stepwise application of the Golden Section Search algorithm to a 

sample quadratic function. This numerical example is presented in detail, illustrating how the 

search interval is progressively reduced through function evaluations at strategically chosen 

points based on the golden ratio. Each iteration is carefully documented, demonstrating the 

convergence of the algorithm toward the function’s minimum. This hands-on approach not 

only validates the theoretical assumptions but also provides practical insights into the 

algorithm’s efficiency and accuracy, making it accessible for both researchers and 

practitioners (Pejic & Arsic, 2019).  

For computational support, the software Mathematica and GeoGebra were utilized for 

symbolic calculations, function plotting, and graphical illustration of the iterative steps. 

Zotero was employed for efficient management of references and citation formatting 

throughout the research process (Boyd & Vandenberghe, 2023). 

This paper provides a comprehensive overview of the Golden Section Search method in 

the context of one-dimensional optimization. Section 2 explores the analytical foundations, 

including concepts such as differentiability, necessary and sufficient conditions for extrema, 

and the definition and properties of unimodal functions. Section 3 presents a detailed 

explanation of the Golden Section Search method, covering its geometric motivation based 

on the golden ratio, the iterative interval reduction process, and convergence criteria. Section 

4 applies the method to a practical numerical example, demonstrating its implementation 

and effectiveness in locating the minimum of a unimodal function. Finally, Section 5 
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summarizes the findings, interprets the results, outlines limitations, and offers directions for 

future research (Chakraborty & Panda, 2016). Research questions of study is as follow; 

 What are the theoretical foundations and convergence characteristics of the GSS 

method?  

 How does GSS perform in solving nonlinear and transcendental optimization problems 

without derivative information? 

 In what ways does GSS compare with other derivative-free optimization methods in 

terms of accuracy, computational efficiency, and limitations?  

METHODS AND MATERIALS 

This study employs a comprehensive theoretical and computational approach to assess the 

performance, efficiency, and practical applicability of the Golden Section Search (GSS) 

method within the broader context of one-dimensional optimization. Recognizing the 

method's significance in solving problems where derivative information is unavailable or 

unreliable, this research aims to analyze both its mathematical foundations and algorithmic 

behavior rigorously. The methodology employed in this investigation is structured into three 

interrelated phases, each contributing to a deeper understanding of the method’s principles 

and performance characteristics 

Analytical Framework: This phase establishes the theoretical groundwork necessary for 

the practical application of the Golden Section Search method in one-dimensional 

optimization. The analysis begins by revisiting essential concepts from classical calculus, with 

a particular focus on identifying the necessary and sufficient conditions for local extrema. 

These include the first-derivative test, which determines critical points where the derivative 

of a function equals zero or is undefined, and the second-derivative test, which helps classify 

these critical points as local minima, maxima, or points of inflection based on the concavity 

of the function (Luo et al., 2021). 

In addition to the calculus-based criteria for extrema, this framework explores the 

definition and key properties of unimodal functions—a fundamental assumption 

underpinning the correctness and convergence of the Golden Section Search. A function is 

considered unimodal over a closed interval if it possesses a single local minimum (or 

maximum) within that interval, and no other local extrema exist. This property ensures that 

multiple minima will not mislead interval-reduction methods such as the Golden Section 

Search and will consistently converge toward the global minimum within the defined domain 

(Tian et al., 2024). 

Furthermore, the section examines the continuity and smoothness conditions often 

required in optimization contexts. While the Golden Section method does not rely on 

derivatives, understanding the smooth behavior of the function can still provide insight into 

convergence behavior and numerical stability. By clearly articulating these mathematical 

assumptions and conditions, this framework provides a rigorous foundation for the 
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subsequent algorithmic implementation and empirical validation stages of the study 

(Noroozi et al., 2022). 

Algorithmic Implementation: This phase focuses on the detailed description and practical 

application of the Golden Section Search (GSS) algorithm. The method is specifically 

designed to find the minimum of a continuous and unimodal function within a given bounded 

interval, making it particularly suitable for problems where derivative information may be 

difficult or impossible to obtain (Sharma et al., 2012). 

The Golden Section Search operates through an iterative interval-reduction process 

guided by the golden ratio, approximately 0.618. Initially, two interior points within the 

search interval are selected such that the distances between points maintain the golden ratio 

proportion. At each iteration, the function is evaluated at these two points, and the 

subinterval containing the higher function value is discarded. This strategy ensures that the 

remaining interval always contains the minimum point, effectively shrinking the search space 

consistently and optimally (Nocedal & Wright, 2006). 

By systematically narrowing the interval of uncertainty, the method converges toward 

the function’s minimum without requiring derivative calculations. The procedure repeats, 

recalculating new points based on the updated interval boundaries, until the length of the 

interval becomes less than a predefined tolerance level (ε), which guarantees the desired 

accuracy of the solution (Noroozi et al., 2022). 

Throughout the implementation, careful attention is given to computational efficiency, 

including minimizing the number of function evaluations per iteration by reusing previously 

computed values. This makes the Golden Section Search a computationally attractive option 

compared to other bracketing methods (Bertsekas, 2016). 

To illustrate the algorithm, it is applied to a well-defined quadratic function known for its 

smooth, unimodal shape within the interval. This choice not only facilitates visualization and 

understanding but also provides a clear benchmark for evaluating the algorithm’s 

convergence behavior and accuracy (Liu et al., 2025). 

Numerical Example and Validation: A sample function is optimized using the method. The 

process continues until the interval length meets a predefined accuracy threshold (ε), 

ensuring convergence to the approximate minimum. The results are then compared with the 

analytically computed solution to validate the accuracy and effectiveness of the method. 

Software Tools Utilized for Computational Implementation and Research Management: 

Wolfram Mathematica was extensively used throughout this study for both symbolic and 

numerical computations. Its powerful symbolic computation capabilities were instrumental 

in performing derivative analysis and defining the mathematical functions under 

consideration. Mathematica also facilitated the numerical implementation of the Golden 

Section Search (GSS) algorithm, enabling accurate step-by-step evaluations and 

convergence checks. Moreover, the software was employed to generate high-precision plots 

that visualized the behavior of the function and highlighted the convergence pattern of the 
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algorithm toward the minimum. These visual aids supported both analytical validation and 

pedagogical clarity. Additionally, Mathematica was used to automate iteration logging and 

produce tabular summaries of numerical results, thereby enhancing the reproducibility and 

transparency of the computational process. 

GeoGebra served as a complementary tool primarily focused on geometric visualization. 

It was advantageous in illustrating the dynamic process of interval reduction inherent in the 

Golden Section Search method. By allowing real-time manipulation and visual tracking, 

GeoGebra made it possible to demonstrate how the golden ratio informs the subdivision of 

intervals during each iteration. This not only strengthened the intuitive understanding of the 

algorithm's mechanics but also supported interactive educational presentations. The 

software’s ability to create dynamic plots helped reinforce the geometric interpretation of 

the method, making it especially valuable for teaching and outreach purposes related to 

optimization theory. 

MATLAB was employed to simulate the iterative behavior of the Golden Section Search 

method and to evaluate its convergence speed under various initial intervals and different 

tolerance levels.  

For reference and citation management, Zotero was employed as a vital bibliographic 

tool. It was used to collect, organize, and manage a wide range of scholarly literature related 

to numerical optimization and the Golden Section Search method. Zotero’s integrated 

features allowed for seamless formatting of in-text citations and bibliographies according to 

APA style guidelines, ensuring consistency and academic integrity throughout the 

manuscript. Furthermore, Zotero's searchable database enabled efficient access to 

previously reviewed materials, streamlining the research process and supporting 

comprehensive literature integration within the study.  

One-dimensional optimization consists of finding a point x at which the objective function 

( )f x attains its maximum or minimum value.  

In many problem formulations, an interval [ , ]a b  is provided, within which the optimal value 

is located.  

A function ( )f x  has a local minimum at the point x  if, for any 0  , there exists a 

neighborhood [ , ]x x     such that for all 𝑥 in this neighborhood:  

*( ) ( )f x f x . 

A function 𝑓(𝑥) has a global minimum at x  if the following inequality holds for all 𝑥  

*( ) ( )f x f x (Abubakar et al., 2022).  

The analytical study of the extrema of a functionis rooted in calculus, particularly in the ( )f x  

behavior of the derivatives of the function. The classical approach begins by identifying 

necessary conditions, which every extremum must satisfy, followed by sufficient conditions 

that confirm whether a given point is indeed a maximum or minimum.  
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Fermat’s Theorem (Necessary Condition)  

As per Fermat’s Theorem, if x  is a local extremum (minimum or maximum) of ( )f x ,  and if 

the function is differentiable at x , then the first derivative at that point must be zero. 

( ) 0. (1)f x   

This condition identifies the critical points of the function, which include:  

 Local minima. 

 Local maxima. 

 Inflection points (where the function changes concavity without reaching an 

extremum). 

Hence, although equation (1) is necessary, it is not sufficient to conclude whether x it is an 

extremum (Abd Elaziz et al., 2017).  

Sufficient Conditions – Second and Higher Derivative Tests  

To determine whether a critical point x  is a minimum or a maximum, we examine the second 

derivative:  

 If ( ) 0f x  the function is concave upwards near x , then it x  is a local minimum.  

 If ( ) 0f x   the function is concave downwards near x , then it x  is a local 

maximum.  

However, if ( ) 0f x  the test is inconclusive, we must examine higher-order derivatives. The 

rule is as follows (Balerna et al. 1975:34): 

 Let n  be the smallest integer greater than  1  such that ( ) ( ) 0nf x  .  

  If n   is even and ( ) ( ) 0nf x  , then x  is a local minimum. 

  If n   is even and 
( ) ( ) 0nf x  , then x  is a local maximum.  

 If n   is odd, then x  is an inflection point, and no extremum exists at x .  

This hierarchical use of derivatives is essential in analyzing complex functions where 

classical second-order conditions are not sufficient (Bertsekas, 2016).  

Unimodal Functions  

Definition of a Unimodal Function in Minimization  

Definition: A continuous function 𝑓(𝑥) is called unimodal on the interval [𝑎, 𝑏] if:  

 There exists a point 𝑥∗ of a local minimum within the interval [𝑎, 𝑏].  

 For any two points 𝑥1 and  𝑥2 on the same side of the minimum point, the closer point 

to 𝑥∗ has a smaller function value. That is, if 𝑥∗ < 𝑥1 < 𝑥2 or 𝑥2 < 𝑥1 < 𝑥∗,  then the 

inequality 𝑓(𝑥1) < 𝑓(𝑥2) holds (Tian et al., 2024).  

Sufficient Condition for Unimodality  
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The following theorem gives a sufficient condition for a function to be unimodal:  

Theorem. If a function 𝑓(𝑥) is twice differentiable on the interval [𝑎, 𝑏] and satisfies 

( ) 0f x   at every point in this interval, then 𝑓(𝑥) is unimodal on [𝑎, 𝑏].  

It is important to note that the condition ( ) 0f x   defines the set of points where the 

function is convex (concave upwards). Conversely, the condition ( ) 0f x   determines a 

concave function, which has a maximum in the interval. [𝑎, 𝑏] and is also 

unimodal(Malekian et al., 2019).  

Golden Section Method   

The term "golden section" was introduced by Leonardo da Vinci. A point 1x  is considered 

the golden section of the segment [ , ]a b   if the ratio of the length of the entire segment 

b a  to the length of the larger part 1b x  is equal to the ratio of the length of the larger 

part to the length of the smaller part 1x a (Figure 2) (Milutinović & Kotlar, 2019, p. 125). 

(Malekian et al., 2019)That is, 1x  it is a golden section if the following relation holds:  

1

1

b xb a

b x x a




 
.  

 
Figure 1: Golden section method (Pejic & Arsic, 2019).   

Similarly, the point 2x , which is symmetric to the midpoint of the segment [ , ]a b , is the 

second golden section of this segment. A notable property of the golden section is that the 

point 1x  is also the golden section of the segment 2[ , ]a x , while the point 2x  is the golden 

section of the segment 1[ , ]x b (Nocedal & Wright, 2006, p. 134).  

The essence of the golden section method is as follows:  

First, within the initial segment 0 0[ , ]a b , the points 1x  and 2x  are determined using the 

following formulas:  

1 0 0 0(1 )( )x a k b a     

2 0 0 0( )x a k b a   , 

where  

5 1
0.618

2
k


   
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Is the compression coefficient.   

Next, the function values at the points 1x  and 2x  are computed, i.e., 1 1( )y f x and 

2 2( )y f x (Noroozi et al., 2022).  

At this stage, two cases are possible:  

1. If 1 2y y , then the new segment is defined as 1 0a a  and 1 2b x . Within this 

segment, new points are chosen:  
(1)

1 1 1 1(1 )( )x a k b a    .  

(1)

2 1x x .  

2.  1 2y y , then the new segment is defined as 1 1a x  and 1 0b b  (Noroozi et al., 

2022). Within this new segment, the points are chosen as follows:  
(1)

1 2x x . 

(1)

2 1 1 1( )x a k b a   .  

In both cases, only one new point is computed (the other remains known). The function 

value at the new point is evaluated, and the comparison process is repeated (Raj et al., 

2022). Based on this, a new segment is selected(Chen et al., 2022).   

This procedure continues until the condition is met. 

( )k kb a , 

Is met, where 𝜀, is the desired accuracy of the search (Adby & Dempster, 1982, p. 123).  

FINDINGS  

This section demonstrates the practical application of the Golden Section Search (GSS) 

method for the optimization of one-dimensional functions. Both maximization and 

minimization problems are considered, involving transcendental and non-algebraic 

functions. Numerical results are systematically tabulated, and analytical diagrams illustrate 

the convergence behavior of the method.  

Assumptions and Parameters  

Let the initial search interval be  [ , ]a b , and denote the golden ratio constant by 
5 1

0.618
2

k


  . 

The termination condition is given by:  

| |b a   , 

where   is a small tolerance parameter (e.g., 0.001  .)  

Critical Cases and Applicability Conditions  

The Golden Section Search method is known for its robustness under certain mathematical 

conditions. Its applicability and performance depend on the following critical assumptions. 
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Table 1. Critical cases and applicability conditions 

Condition Description Applicability 

Unimodality of the 

function 

The function ( )f x  must be unimodal in the interval 

[ , ]a b , i.e., it contains a single minimum (or maximum). 

Essential for global 

convergence. 

Continuity on the 

interval 

( )f x  should be continuous [ , ]a b , ensuring well-

defined function values at evaluation points. 

Required for function 

evaluation. 

Non-differentiability 

allowed 

The method does not require derivative information, 

making it suitable for functions that are non-differentiable 

or non-smooth. 

Broadens the scope of 

applicable functions. 

Bounded initial 

interval 

The initial interval [ , ]a b  must be finite and must contain 

the extremum. 

Mandatory to localize 

the search. 

Multimodal 

functions caution 

For functions with multiple minima or maxima within 

[ , ]a b , the method may converge to a local extremum 

depending on the initial interval. 

Global minimum not 

guaranteed. 

Noise and 

discontinuities 

High noise or sharp discontinuities in the function can 

degrade convergence speed or accuracy. 

May require pre-

processing or 

smoothing. 

These conditions dictate the scope within which GSS is effective. Violation of unimodality or 

inappropriate interval selection may lead to suboptimal convergence or convergence to 

local extrema.  

Summary of Numerical Results  

Three representative examples illustrate the GSS method’s application:  

Example 1: Quadratic Function Minimization.  

To find the minimum of the function using the Golden Section Method, we consider the 
function: 

2( ) 3 20 1f x x x    

With the initial interval: 

0 0[ , ] [ 7, 7]a b    

And given parameters:  
0.5, 0.04   .  

The Golden Ratio constant is calculated as: 

5 1
0.618

2
k


  .  

Step 1: Compute the Initial Points 

(0)

1 0 0 0(1 )( ) 7 (1 0.618)(7 7) 1.652x a k b a           . 

(0)

2 0 0 0( ) 7 0.618(7 7) 1.652x a k b a        .  

Evaluating the function at these points: 

(0) (0) 2

1 1( ) 3( 1.652) 20( 1.652) 1 25.85y f x        . 



Journal of Natural Science Review, 3. (3), 59-80 

 
69 

(0) (0) 2

2 2( ) 3(1.652) 20(1.652) 1 40.23y f x     . 

 Since (0) (0)

1 2y y the new interval is  

(0)

1 1 0 2[ , ] [ , ] [ 7, 1.652]a b a x   . 

We check the stopping condition:  

1 1 1 1.652 7 8.652 0.5b a         .  

Thus, we proceed to the next step. 

Step 2: Compute New Points in the Updated Interval  

(1)

1 1 1 1(1 )( ) 7 (1 0.618)(1.652 7) 3.69x a k b a           . 

(1) (0)

2 1 1.652x x   .  

 Evaluating the function at (1)

1x :  

(1) (1) 2

1 1( ) 3( 3.69) 20( 3.69) 1 33.95y f x        . 

(1) (1) (0)

2 2 1( ) 25.85y f x y    .  

Since (1) (1)

1 2y y the new interval is:  

(1)

2 2 1 2[ , ] [ , ] [ 7, 1.652]a b a x    . 

Checking the stopping condition:  

2 2 2 1.652 7 5.35 0.5b a          . 

Thus, we proceed further. 

Step 3: Compute New Points in the Interval [𝑎2, 𝑏2] 

(2)

1 2 2 2(1 )( ) 7 (1 0.618)( 1.652 7) 4.96x a k b a            . 

(2) (1)

2 1 3.69x x   . 

Evaluating the function:  

(2) (2) 2

1 1( ) 3( 4.96) 20( 4.96) 1 26.4y f x        . 

(2) (1)

2 1 33.95y y   . 

Since (2) (2)

1 2y y the new interval is:  

(3)

3 3 2 1[ , ] [ , ] [ 7, 3.69]a b a x    .  

Checking the stopping condition:  

3 3 3 3.69 7 3.31 0.5b a          . 

Thus, we proceed further. 

Step 4: Compute New Points in the Interval 3 3[ , ]a b  

(3)

1 3 3 3(1 )( ) 7 (1 0.618)( 3.69 7) 5.73x a k b a            . 
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(3) (2)

2 1 4.96x x   . 

Evaluating the function: 

(3) (3) 2

1 1( ) 3( 5.73) 20( 5.73) 1 17.1y f x        . 

(3) (2)

2 1 26.4y y   . 

Since (3) (3)

1 2y y the new interval is:  

(3)

4 4 1 3[ , ] [ , ] [ 5.73, 3.69]a b x b    . 

Checking the stopping condition:  

4 4 4 3.69 5.73 2.04 0.5b a          . 

Thus, we proceed further. 

Step 5: Compute New Points in the Interval 4 4[ , ]a b  

(4) (4)

1 2 3.69x x   . 

(4)

2 4 4 4( ) 5.73 0.618( 3.69 5.73) 4.47x a k b a          . 

Evaluating the function: 

(4) (3)

1 2 26.4y y   . 

(4) (4) 2

2 2( ) 3( 4.47) 20( 4.47) 1 30.46y f x        . 

Since (4) (4)

1 2y y the new interval is:  

(4)

5 5 1 4[ , ] [ , ] [ 3.69, 3.69]a b x b    . 

Stopping Condition. Since the interval length is:  

5 5 5 3.69 3.69 0 0.5b a          . 

The search terminates, and the approximate minimum is found at:  

3.69x   . 

Thus, the function reaches its minimum value 3.69x   using the Golden Section Method.  

To explain the above example more clearly, we consider the following diagram:  
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Figure 2:  Golden section method for 𝑓(𝑥) = 3𝑥2 + 20𝑥 − 2 .   

This diagram illustrates how the Golden Section Method is applied to find the minimum of 

the function 2( ) 3 20 1f x x x    within the initial interval [ 7, 7] . The red points represent 

the updated intervals, and the black points indicate the locations where the function values 

were evaluated. The green line shows the approximate location of the minimum * 3.69x   .  

Example 2   ( ) sin(3 ) cos(3 ), 3, 3f x x x x    . 

Parameters:  

 Golden ratio 
5 1

0.618
2

k


  . 

 Tolerance: 0.02  .  

 Initial interval: 3, 3a b   . 

Iteration 1:  

(0)

1 0 0 0(1 )( ) 3 (1 0.618)(3 3) 0.708x a k b a           . 

(0)

2 0 0 0( ) 3 0.618(3 3) 3 0.618(6) 0.708x a k b a           . 

(0) (0)

1 1( ) sin[3( 0.708)] cos[3( 708)] 1.376y f x       . 

(0) (0)

2 2( ) sin[3(0.708)] cos[3(0.708)] 0.324y f x    . 

Since 
0 0

1 2y y the new interval is 
(0)

1 1 0 2[ , ] [ , ] [ 3, 0.708]a b a x   .  

Iteration 2:  
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(1)

1 3 (1 0.618)(0.708 3) 1.583x        . 

(1)

2 3 0.618(0.708 3) 0.708x       .  

(1) (1)

1 1( ) sin[3( 1.583)] cos[3( 1.583)] 1.037y f x      . 

(1) (2)

2 2( ) sin[3( 0.708)] cos[3( 0.708)] 1.376y f x       . 

Since 
1 1

1 2y y the new interval is 
(1)

2 2 1 1[ , ] [ , ] [ 1.583, 0.708]a b x b   .  

Continue iterating 

 

Table 2. Algorithm of Golden Section Method  ( ) sin(3 ) cos(3 ), 3, 3f x x x x     

Iteration a b X1 X2 F(X1) F(X2) 
Interval 

Length 
1 -3 3 -0.7082 0.708204 -1.37646 0.324588 6 
2 -3 -0.7082 -1.58359 -0.7082 1.037641 -1.37646 3.708204 
3 -1.58359 0.708204 -0.16718 -1.04257 -1.37646 0.396049 2.291796 
4 -1.58359 -0.16718 -1.04257 -0.50155 -1.01378 -1.37646 1.416408 
5 -1.04257 -0.50155 -0.83592 -0.7082 -1.398 -1.37646 0.875388 
6 -1.04257 -0.7082 -0.91486 -0.83592 -1.30889 -0.93172 0.54102 
7 -0.91486 -0.83592 -0.83592 -0.78114 -1.398 -1.41199 0.334369 
8 -0.91486 -0.7082 -0.78114 -0.7082 -1.41199 -1.398 0.206651 
9 -0.83592 -0.75699 -0.75699 -0.78714 -1.41157 -1.41419 0.127718 
10 -0.83592 -0.75699 -0.80577 -0.78274 -1.41419 -1.41199 0.078934 
11 -0.80577 -0.77562 -0.79426 -0.78714 -1.41419 -1.41199 0.048784 
12 -0.80577 -0.77562 -0.78114 -0.78274 -1.41199 -1.41419 0.03015 
13 -0.79426 -0.77562 -0.78986 -0.78714 -1.41409 -1.41419 0.018634 
14 -0.79426 -0.78274 -0.78986 -0.78714 -1.41409 -1.41419 0.011516 

Approximate minimum point: 0.786298x    

Minimum value of ( ) 1.414208f x    

Result: 

 Minimum location:    * 0.794255 0.782739
0.786298

2
x

 
   . 

 Minimum value: *( ) 1.414208f x   .  
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Figure 3: Golden section method for  ( ) sin(3 ) cos(3 ), 3, 3f x x x x     

Example 3  ( ) | sin( ) ln( 2.5) |, 2.4, 2f x x x x     .  

We are minimizing this non-algebraic function using the Golden Section Search (GSS) 
method with: 

 Initial interval:  2.4, 2 . 

 Golden ratio: 0.618  . 

 Tolerance: 0.03  . 

Iteration Table 
 

Table 3. Algorithm of the golden section method  ( ) | sin( ) ln( 2.5) |, 2.4, 2f x x x x      

Iteration a b X1 X2 F(X1) F(X2) 
Interval 

Length 

1 -2.400000 2.000000 -0.719350 0.319350 0.380169 0.325410 4.400000 

2 -0.719350 2.000000 0.391350 0.961301 0.325410 1.018070 2.719350 

3 -0.719350 0.961301 -0.077398 0.319350 0.068417 0.325410 1.680650 

4 -0.719350 0.319350 -0.322602 -0.077398 0.246695 0.068417 1.038699 

5 -0.322602 0.319350 -0.077398 0.074146 0.068417 0.070042 0.641951 

6 -0.322602 0.074146 -0.171058 -0.077398 0.143910 0.068417 0.396748 

7 -0.171058 0.074146 -0.077398 -0.019513 0.068417 0.017726 0.245204 

8 -0.077398 0.074146 -0.019513 0.016261 0.017726 0.015005 0.151544 

9 -0.019513 0.074146 0.016261 0.038371 0.015005 0.035735 0.093659 

10 -0.019513 0.038371 0.002597 0.016261 0.002382 0.015005 0.057885 

11 -0.019513  0.016261 -0.005849 0.002597 0.005345 0.002382 0.035775 

12 -0.005849 0.016261 0.002597 0.007816 0.002382 0.007186 0.022110 

13 -0.005849 0.007816 -0.000629 0.002597 000576 0.002382 0.013665 

Approximate minimum point: 0.001626x    

Minimum value of ( ) 0.001489f x   

After 13 iterations, the interval was reduced to:  

Therefore, the approximate minimum point and function value are:  
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min min0.00063, ( ) 0.00058x f x ; .  

 The function exhibits non-smooth behavior due to the logarithmic and absolute value 

components. 

 The GSS method effectively narrowed down to the global minimum point near 0. 

 No derivative or gradient was required — showcasing GSS’s power in non-algebraic 

and non-differentiable cases. 

  
Figure 4: Golden section method for  ( ) | sin( ) ln( 2.5) |, 2.4, 2f x x x x      

DISCUSSION 

The primary objective of this study was to analyze and validate the Golden Section Search 

(GSS) method as a practical approach for optimizing one-dimensional functions, particularly 

those that are continuous and unimodal. GSS stands out among derivative-free optimization 

techniques due to its simplicity, deterministic nature, and guaranteed convergence under 

unimodality conditions. The results of this study not only confirm the theoretical robustness 

of the method but also highlight its practical utility across a broad spectrum of function types, 

including smooth quadratic, transcendental, and non-smooth functions with singularities. 

Through step-by-step numerical examples, the method's consistency, efficiency, and 

adaptability were demonstrated. In this section, we interpret the key findings in light of the 

original research questions, relate them to established optimization theory, and situate them 

within the broader scientific and engineering literature on one-dimensional optimization.  

The empirical results strongly align with the original research objectives, demonstrating 

that the Golden Section Search (GSS) method is a reliable derivative-free optimization 

technique, particularly applicable in scenarios where derivative information is unavailable or 

unreliable. Across all test cases, the method consistently converged toward the minimum, 

thereby confirming the mathematical convergence properties analyzed in earlier sections. 

Furthermore, its performance across various function types—including quadratic, oscillatory, 
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and non-differentiable forms—highlights the method's broad adaptability and underscores 

its relevance in engineering, computational, and scientific modeling contexts.  

The Golden Section Search (GSS) method demonstrated consistent performance across 

three distinct optimization scenarios, each chosen to represent varying levels of analytical 

complexity. In the first example, a smooth and convex quadratic function  
2( ) 3 20 1f x x x   served as a classical benchmark. The method rapidly converged to the 

minimum within five iterations, effectively exploiting the golden ratio 0.618k  to reduce the 

uncertainty interval geometrically. This confirmed the theoretical convergence properties of 

GSS, especially its exponential rate of interval reduction. Example 2, also involving a smooth 

unimodal function, reinforced the method’s behavior by showing that early elimination of 

non-promising subintervals leads to efficient localization of the extremum. Notably, GSS 

retained previously evaluated points, reducing computational overhead and highlighting its 

practicality in resource-constrained settings. 

 Example 3 introduced a significantly more complex function, ( ) | sin( ) ln( 2.5) |f x x x   , 

characterized by non-smoothness and a logarithmic singularity near 2.5x   . Despite 

lacking differentiability and violating the assumptions of classical methods, the GSS 

algorithm converged reliably to a global minimum 0x   after 13 iterations, entirely within 

the defined tolerance. This result illustrates the robustness of GSS in handling non-standard 

objective functions where derivative-based methods are inapplicable. Since GSS relies only 

on function evaluations and assumes unimodality—not continuity or differentiability—it is 

particularly well-suited for real-world scenarios involving noisy, empirical, or simulation-

derived functions. These observations are consistent with findings from (Abd Elaziz et al., 

2017), (Hashemi et al., 2022), and (Noroozi et al., 2022), who emphasized the method’s 

flexibility under non-ideal conditions.  

Taken together, the results from all three examples underscore the reliability, simplicity, 

and generalizability of the GSS method. It performs exceptionally well on smooth, convex 

functions with rapid convergence and maintains accuracy even in complex, non-

differentiable cases. The variation in iteration counts—from 5 to 13—reflects not a limitation 

of the method but rather the intrinsic complexity of the functions involved. This confirms that 

GSS offers a robust trade-off between efficiency and general applicability, making it a 

powerful tool in scientific and engineering optimization problems, especially where gradient 

information is unavailable or unreliable.  

The findings of this study align closely with the results reported by  (Abd Elaziz et al., 

2017) and (Malekian et al., 2019), both of whom emphasized the critical role of unimodality 

in the success of derivative-free optimization algorithms. While those prior studies offered 

valuable theoretical frameworks and simulation results, they primarily focused on high-level 

assessments of GSS behavior. In contrast, the present research contributes to the literature 

by offering a comprehensive, step-by-step procedural demonstration of the GSS method in 

action, backed by detailed analytical validation and applied numerical examples. This 
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structured exposition addresses a noticeable gap in the literature regarding the practical 

implementation of the method across functions with varying characteristics—smooth, 

transcendental, and non-differentiable. 

When compared to classical optimization methods such as Brent’s Method and the 

Newton-Raphson technique, GSS exhibits a unique trade-off. While Newton-Raphson and 

Brent’s algorithms typically converge faster when the objective function is twice 

differentiable and well-behaved, their reliance on first and second derivatives renders them 

less reliable or inapplicable in cases where derivatives are undefined, discontinuous, or noisy. 

This limitation is particularly evident in real-world problems involving simulation-based 

models, empirical measurements, or experimental data, where smoothness and 

differentiability cannot be guaranteed. In such scenarios, GSS demonstrates superior 

robustness, offering guaranteed convergence with minimal assumptions. This observation 

reinforces Bertsekas (2016), who noted the increasing need for adaptable, derivative-free 

methods in practical engineering applications, where modeling errors and irregularities are 

the norm rather than the exception.  

Moreover, a distinctive contribution of this study lies in its attention to the geometric 

foundations of the Golden Section Search method, which are rooted in the classical concept 

of the golden ratio—a concept historically attributed to Leonardo da Vinci and the aesthetics 

of proportion. While this geometric basis is well-known in mathematics and the arts, it has 

rarely been emphasized or visualized within the optimization literature. By integrating 

graphical illustrations and geometric reasoning into the convergence process, this study 

enhances the interpretability of the algorithm for both learners and practitioners. This 

pedagogical value makes the research not only a technical contribution to the field of 

optimization but also a resource for teaching and communicating algorithmic intuition more 

effectively. 

The findings have several implications for both theory and practice:  

Mathematically, the study reaffirms the sufficiency of the first and second-order 

derivative tests, but also shows the need for higher-order conditions in ambiguous cases—

demonstrating the complementary role of GSS in such contexts. 

Practically, the method holds strong potential within mathematical modules, particularly 

in solving problems involving empirically defined functions, noisy numerical data, or discrete 

input values—such as those encountered in mathematical modeling, applied analysis, and 

instructional settings for numerical optimization. 

The algorithm’s low computational overhead, coupled with deterministic convergence, 

makes it ideal for embedded systems and real-time decision-making models where resources 

are limited.  

Despite its numerous strengths and widespread applicability, the Golden Section Search 

(GSS) method has inherent limitations that must be carefully considered when selecting an 

optimization approach. Notably, these limitations affect its performance and suitability in 
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certain problem domains, particularly those involving complex or non-ideal function 

characteristics. Key constraints include:   

It is not optimal for multimodal functions, as it assumes a single minimum within the 

interval and may converge to a non-global extremum in the presence of multiple local minima 

due to the absence of global search mechanisms.  

Its convergence speed, while consistent, may be outpaced by gradient-based or quasi-

Newton methods when derivative information is available.  

To address these gaps, future research could:  

Extend the method to hybrid metaheuristics that switch between GSS and other 

methods based on function characteristics.  

Develop multidimensional adaptations of GSS for problems in higher dimensions, 

possibly by embedding GSS within coordinate descent frameworks.  

Investigate stochastic variants for optimization under uncertainty or noisy data, relevant 

to real-time and probabilistic modeling.  

CONCLUSION 

This study has comprehensively examined the Golden Section Search (GSS) method for one-

dimensional function optimization, reaffirming its strong theoretical foundations and 

practical efficiency. Key contributions include the formalization of its mathematical 

framework, detailed stepwise algorithmic procedures, and validation through numerical 

examples involving both algebraic and transcendental functions. 

As a derivative-free optimization technique, the GSS method demonstrates robust 

reliability, particularly for unimodal functions, with guaranteed convergence to a solution 

within predetermined accuracy thresholds. Its computational efficiency and applicability to 

non-differentiable functions render it an indispensable tool in various scientific and 

engineering domains. 

From an applied perspective, this work advances current understanding by highlighting 

GSS’s robustness across diverse function types, accompanied by explicit implementation 

guidelines and termination criteria. Such insights facilitate the broader adoption of GSS in 

scenarios where derivative information is either unavailable or unreliable. 

Future research directions include extending the method to multimodal optimization 

through hybrid algorithms, adapting its principles for higher-dimensional problems, 

implementing adaptive stopping criteria to optimize computational cost versus accuracy 

dynamically, and applying the method to complex real-world problems, such as those 

encountered in machine learning and control engineering. 

In summary, this research not only reinforces the Golden Section Search as a cornerstone 

of derivative-free optimization but also paves the way for its ongoing evolution and wider 

application, ensuring its sustained relevance in tackling advanced optimization challenges. 
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