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ABSTRACT  ARTICLE INFO 

Quarantine and vaccination of individuals suspected of exposure to 
infectious agents are fundamental public health strategies that have 
historically been employed to mitigate the transmission of contagious 
diseases within human populations. This study introduced a modified 
SEIVQRD deterministic model to evaluate the population-level effects of 
quarantine and vaccination on individuals potentially exposed to the Ebola 
virus. The study showed that the Model exhibits backward bifurcation 
when ℛ0 = 1. This implies that even when the reproductive number ℛ0 
An unstable endemic and a stable disease-free equilibrium can coexist in 
less than one. This phenomenon arises from imperfect quarantine and 
indicates that while ℛ0 < 1 is necessary for adequate infection control; it 
is no longer sufficient and creates additional challenges for effectively 
controlling Ebola. Furthermore, the sensitivity analysis revealed that the 
quarantine effectiveness parameter and the parameter related to the 
isolation of vulnerable individuals had less influence on the incidence of 
new Ebola cases. However, vaccinating non-quarantined susceptible 
individuals significantly affects the infection burden and can lower the 
reproductive value to less than one. Overall, the Model emphasizes the 
critical role of vaccination in reducing Ebola virus transmission. Although 
quarantine measures alone may not be sufficient, their combination with 
vaccination can significantly reduce infection rates. 
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INTRODUCTION 

Historically, contagious diseases have posed a significant risk to global health, causing 

widespread morbidity and mortality (Rai et al., 2024). Ancient outbreaks such as the Spanish 

flu and Black Death Bubonic Plague have caused tens of millions of deaths. In modern times, 

diseases such as measles, malaria, tuberculosis, and AIDS (acquired immunodeficiency 

syndrome) continue to cause millions of deaths annually, highlighting the persistent burden 

of infectious diseases on public health (Desai & Arora, 2023). The global increase in infectious 

diseases, such as COVID-19, cholera, dengue, and influenza, underscores the importance of 
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monitoring and reporting disease outbreaks to implement effective control strategies and 

warning systems (Maldonado, 2023). Education and public awareness campaigns, 

particularly those promoting hygienic and healthy lifestyles, play a significant role in 

decreasing the prevalence of diseases caused by infectious microorganisms, including 

bacteria, viruses, fungi, and parasites (Siddique, 2022). 

Ebola virus disease (EVD) is a severe and frequently fatal infection, with case fatality rates 

ranging from 25% to 90% (Bisimwa et al., 2022; Science et al., 2023). The virus was discovered 

in Zaire in 1976 (Sabaté, 2021). Disease symptoms include fever, throat pain, muscular 

discomfort, headaches, vomiting, diarrhea, rash, and internal and external bleeding (Science 

et al., 2023). The incubation period for the disease ranges from two to twenty-one days 

(Sabaté, 2021). EVD mainly spreads through contact with infected individuals' blood, bodily 

fluids, or tissue (Jain et al. & Science et al., 2023). The largest outbreak of Ebola began in 

Guinea in December 2013, infecting 29,000 individuals and resulting in over 11,000 deaths in 

Sierra Leone, Liberia, and Guinea (Samadi, 2024; Umutesi et al., 2023). A recent epidemic in 

Congo in April 2018 caused 237 cases and 153 deaths as of October 20, 2018 (Sabaté, 2021). 

Surveillance, early detection, and proper public health measures are essential for controlling 

the propagation of EVD and minimizing its effects on the affected populations (Isiaka et al., 

2024). 

Mathematical models, such as compartmental models, are critical for comprehending 

and forecasting the propagation of infectious diseases such as tuberculosis (TB) and COVID-

19 (Castillo-Chavez & Song, 2004).  These models provide an analytical framework for 

studying population outbreak dynamics by inferring transmission patterns, forecasting 

future trends, and analysing prediction uncertainty (Dubey et al., 2016; Marino et al., 2008.). 

By dividing populations into compartments based on disease stages, these models help to 

analyse disease severity and accurately predict the spread of infections (Biology Methods & 

Protocols, 2023). Moreover, advancements in modelling techniques, such as the modified 

susceptible-infected-recovered (SIR) Model and the use of network effects, have enhanced 

our understanding of how an infection can move through a network of individuals 

(percolation phenomena) and herd immunity, contributing to more effective epidemic 

management strategies (Harris & Bodmann, 2022). 

Recent research on EVD transmission dynamics has highlighted the importance of 

quarantine and vaccination for limiting EVD outbreaks (Ria Rai et al., 2024). Studies have 

shown that implementing appropriate quarantine measures for exposed persons can 

considerably minimize the spread of EVD. In contrast, vaccination programs have been 

demonstrated to prevent an epidemic of infections when the fundamental reproductive value 

is smaller than one (Abayomi et al., 2023). Additionally, the persistence of EVD in body fluids 

post-recovery underscores the necessity for close monitoring of survivors and contacts to 

prevent re-emergence of the disease (Liu et al., 2022). Furthermore, the availability of 

hospital beds and refurbishment of uninhabitable beds are critical factors in EVD outbreaks, 



Journal of Natural Science Review, 2(3), 97-120 

 
99 

emphasizing the need for continuous resource management in healthcare facilities (Pecoraro 

et al., 2021). 

In this study, we developed a deterministic mathematical model of SEIQRD presented by 

Dénes et al. (2019). Our Model introduces two new compartments for vaccinated individuals: 

one for those who are not quarantined and the other for those who are quarantined. Unlike 

the Model demonstrated by (Dénes et al., 2019), which uses a standard incidence rate of 

infection (for quarantined individuals), we employed a monotone nonlinear incidence rate 

(Crowley-Martin type). This approach models the rate at which new cases occur over time 

rather than the cumulative number of cases, thereby accounting for the inhibitory effects of 

behavioural changes among susceptible and infected individuals as their numbers increase. 

This modification addresses the discontinuity issue found in the right-hand side function of 

the Model at the disease-free equilibrium point, making it necessary for accurate 

representation. 

This study aimed to develop and analyse a model of Ebola virus transmission dynamics, 

focusing on assessing the impact of quarantine and vaccination measures on disease control. 

Specifically, this study aimed to: 

1. Analyse the stability of the disease-free equilibrium (DFE): evaluate how the 

primary reproductive number (R₀) affects the stability of the DFE and identify the 

conditions under which the DFE remains stable. 

2. Investigate backward bifurcation: Examine the occurrence of backward 

bifurcation and its implications for disease persistence, especially in contexts 

where quarantine measures are imperfect and vaccination coverage varies. 

3. Determine the non-existence of backward bifurcation: Investigate the 

conditions under which backward bifurcation does not occur, providing insights 

into scenarios where disease eradication is more achievable. 

4. Conduct uncertainty and sensitivity analysis: Assess the impact of parameter 

uncertainties and sensitivities on the Model's predictions to gauge the robustness 

of the proposed control strategies. 

5. Numerical simulations were performed to validate the theoretical findings and 

investigate the practical implications of quarantine and vaccination strategies for 

controlling Ebola virus transmission. 

METHODS AND MATERIALS   

The Model is constructed as follows. The total number of people, 𝑁(𝑡), at time 𝑡 is divided 

into two groups: non-quarantined persons 𝑁𝑈(𝑡) and quarantined persons 𝑁𝑄(𝑡). 

Thus, 𝑁(𝑡) = 𝑁𝑄(𝑡) + 𝑁𝑈(𝑡) the quarantined individuals are further categorized into four 

classes: Susceptible, Exposed, Vaccinated, and Symptomatic, denoted by 𝑆𝑄(𝑡), 𝐸𝑄(𝑡),

𝑉𝑄(𝑡) and 𝐼𝑄, respectively. Therefore, 
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𝑁𝑄(𝑡) = 𝑆𝑄(𝑡) + 𝐸𝑄(𝑡) + 𝑉𝑄(𝑡) + 𝐼𝑄(𝑡).  (1) 

Similarly, at time 𝑡, the total non-quarantined persons are split into the 𝑆𝑈(𝑡) 

(susceptible), 𝐸𝑈(𝑡) (exposed, which are infected but still not infectious), 𝑉𝑈(𝑡) (vaccinated), 

𝐼𝑈(𝑡) (symptomatic), 𝐼𝑇(𝑡) (treated), 𝑅(𝑡) (recovered), 𝐷(𝑡) (dead) classes. Hence 

𝑁𝑈(𝑡) = 𝑆𝑈(𝑡) + 𝐸𝑈(𝑡) + 𝑉𝑈(𝑡) + 𝐼𝑈(𝑡) + 𝐼𝑇(𝑡) + 𝑅(𝑡) + 𝐷(𝑡). 

The force of infection related to the Model (denoted by 𝜆(𝑡)) is calculated as (Dénes et 

al., 2019): 

 

𝜆(𝑡) =
𝐼𝑈(𝑡) + 𝜂𝑇𝐼𝑇(𝑡) + 𝜂𝑄𝐼𝑄(𝑡) + 𝜂𝐷𝐷(𝑡)

𝑁𝑈(𝑡)
 

(2) 

In equation (2), the contagiousness of people in the 𝐼𝑇 , 𝐼𝑄, and 𝐷 categories are adjusted 

by the parameters 𝜂𝑇 , 𝜂𝑄, and 𝜂𝐷, respectively. This adjustment reflects their relative 

infectiousness compared to that of the 𝐼𝑈(𝑡) (symptomatic) class. Similar to the approach in 

reference (Dénes et al., 2019.), quarantine is modelled as follows: 

Susceptible individuals suspected of having Ebola are quarantined at a rate 𝑞. Due to 

imperfections in quarantine, there is a probability 𝑏 that quarantined individuals may become 

infected and proceed to the 𝐸𝑄  Category. Simultaneously, quarantined people remain in 𝑆𝑄 

Class of susceptible individuals, with a probability of (1 − 𝑏), remain susceptible. 

Additionally, at the rate 𝑟𝑄, quarantined susceptible individuals are transferred to the  𝑆𝑈 

Class, where they did not become infected by completing the quarantine phase. 

In the Model described by (Brettin et al., 2018), vaccination was implemented as follows: 

The rate. 𝜙1 of individuals from the un-quarantined susceptible class 𝑆𝑈 is vaccinated and 

moved to the vaccinated class 𝑉𝑈. Similarly, a rate 𝜙2 of individuals from the quarantined 

susceptible class 𝑆𝑄 are vaccinated and transferred to the vaccinated class 𝑉𝑄. We assumed 

that the effectiveness of vaccination decreases over time at a rate of 𝜔 for individuals in 

both 𝑉𝑈 and 𝑉𝑄. Figure 1 illustrates the flow diagram of the Model, and Table 1 lists its 

parameters. 

 

Figure 1. Flow diagram of model 3 
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A system of deterministic nonlinear differential equations represents the Model. 

𝑆𝑈
′ (𝑡) = Π − 𝑘𝑏𝑆𝑈(𝑡)𝜆(𝑡) − 𝑞𝑘(1 − 𝑏)𝑆𝑈(𝑡)𝜆(𝑡) + 𝑟𝑄𝑆𝑄(𝑡) − 𝜙1𝑆𝑈(𝑡) + 𝜔𝑉𝑈(𝑡)

−𝑑𝑆𝑈(𝑡)
 

𝑆𝑄
′ (𝑡) = 𝑞𝑘(1 − 𝑏)𝑆𝑈(𝑡)𝜆(𝑡) −

𝑏𝑘𝑄
𝑄𝑆𝑄(𝑡)𝐼𝑄(𝑡)

(1 + 𝛼1𝑆𝑄(𝑡))(1 + 𝛼2𝐼𝑄(𝑡))
− 𝑟𝑄𝑆𝑄(𝑡) − 𝜙2𝑆𝑄(𝑡)

+𝜔𝑉𝑄(𝑡) − 𝑑𝑆𝑄(𝑡)

 

𝐸𝑈
′ (𝑡) = (1 − 𝑞)𝑘𝑏𝑆𝑈(𝑡)𝜆(𝑡) − 𝑝𝐸𝑈(𝑡) − 𝑑𝐸𝑈(𝑡) 

𝐸𝑄
′ (𝑡) = 𝑞𝑘𝑏𝑆𝑈(𝑡)𝜆(𝑡) +

𝑏𝑘𝑄
𝑄𝑆𝑄(𝑡)𝐼𝑄(𝑡)

(1 + 𝛼1𝑆𝑄(𝑡))(1 + 𝛼2𝐼𝑄(𝑡))
− 𝑝𝐸𝑄(𝑡) − 𝑑𝐸𝑄(𝑡) 

𝑉𝑈
′ (𝑡) = 𝜙1𝑆𝑈(𝑡) − 𝜔𝑉𝑈(𝑡) − 𝑑𝑉𝑈(𝑡) 

𝑉𝑄
′ (𝑡) = 𝜙2𝑆𝑄(𝑡) − 𝜔𝑉𝑄(𝑡) − 𝑑𝑉𝑄(𝑡) 

𝐼𝑈
′ (𝑡) = 𝑝𝐸𝑈(𝑡) − (𝑣 + 𝑚 + 𝑤)𝐼𝑈(𝑡) − 𝑑𝐼𝑈(𝑡) 

𝐼𝑇
′ (𝑡) = 𝑤(𝐼𝑈(𝑡) + 𝐼𝑄(𝑡)) − (𝑣 + 𝑚)𝐼𝑇(𝑡) − 𝑑𝐼𝑇(𝑡) 

𝐼𝑄
′ (𝑡) = 𝑝𝐸𝑄(𝑡) − (𝑣 + 𝑚 + 𝑤)𝐼𝑄(𝑡) − 𝑑𝐼𝑄(𝑡) 

𝑅′(𝑡) = 𝑣(𝐼𝑈(𝑡) + 𝐼𝑇(𝑡) + 𝐼𝑄(𝑡)) − 𝑑𝑅(𝑡) 

𝐷′(𝑡) = 𝑚(𝐼𝑈(𝑡) + 𝐼𝑇(𝑡) + 𝐼𝑄(𝑡)) − 𝑓𝐷(𝑡) 

(3) 

The auxiliary equation for model (2) is given by 

 𝐵′(𝑡) = 𝑓𝐷(𝑡) (4) 

П represents the recruitment rate due to immigration or childbirth. The likelihood of 

infection for each contact is denoted by 𝑏, and the average daily rate of interactions between 

people is represented by 𝑘. The infection force of the Model, denoted by 𝜆(𝑡), is defined by 

Equation (2). Instead of using the usual combined transfer parameter 𝛽, we separate the 

parameters 𝑏 and 𝑘. This means we assume that a proportion 𝑏 of the 𝑘 contacts made by an 

infectious person each day leads to infection. Parameter 𝑞 represents the proportion of 

vulnerable people quarantined, and the natural rate is denoted by 𝑑. This mortality 

proportion was presumed to be uniform across all categories. Quarantined people contract 

the Ebola virus in a proportion of 𝑏𝑘𝑄
𝑄. Parameters 𝜙1 and 𝜙2 represent the vaccination rates 

for non-quarantined and quarantined susceptible individuals, respectively, and 𝜔 is the wear-

off rate. 

Parameter p indicates the proportion of people who progressed from the exposed 

categories (𝐼𝑈 or 𝐼𝑄) to the symptomatic categories (𝐸𝑈 or 𝐸𝑄). Specifically, the mean 

incubation time for infection is 1/𝑝. Parameter 𝑤 represents the proportion of hospitalized 

infectious people in symptomatic categories 𝐼𝑈 and 𝐼𝑄. Parameter 𝑣 indicates the proportion 

at which infected people recover, whereas m represents the per capita death proportion 

caused by the infection. Parameter 𝑓 is the burial rate for individuals who have died from 
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Ebola, meaning that the average time from death to burial is 1/𝑓.  Hospitalized individuals 

are believed to transmit the disease. The mean infectiousness period is (1/𝑤 + 𝑚 + 𝑣). 

As mentioned by (Dénes et al., 2019), Model (3) improves upon several existing 

quarantine and isolation models by incorporating a nonlinear rate for quarantining 

susceptible individuals, which allows infection rates to increase even during quarantine. 

Additionally, we applied the monotone (Crowley-Martin type) incidence rate for infections 

during quarantine, which permits infected individuals to continue transmitting the infection 

while quarantined or isolated. This Model accounts for the heterogeneity between infected 

individuals who are quarantined or isolated and those who are not. Specifically, it 

distinguishes infected people based on whether they are quarantined or isolated (𝐸𝑄  and 𝐼𝑄) 

and those who are neither quarantined nor isolated (𝐸𝑈 and 𝐼𝑈). This approach facilitates the 

evaluation of intervention strategies to promote behavioural changes among infected 

individuals in quarantine or isolation, thereby reducing the transmission of infections. 

Table 1. Description of parameters, their baseline values, and ranges 

Description of parameters Range Reference 

Π Rate of recruitment 11826/𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑑 Rate of natural death 0.00054/ 𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑏 Probability of transmission per contact 0.054 (Dénes et al. , 2019. ) 

𝜂𝑇  Modifies the transmissibility of hospitalized 
people 

0.86 
(Dénes et al. , 2019. ) 

𝜂𝑄 Modifies the infectiousness of quarantined 

infected persons 
0.502(0.5 − 0.9) 

(Dénes et al. , 2019. ) 

𝜂𝐷 Parameter for adjusting the transmissibility of 
people who died from Ebola 

3.89 
(Dénes et al. , 2019. ) 

𝑘 Average per capita contact rate in the community 9.15/𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑞 Rate of quarantine of susceptible persons 
0.125(0.05
− 0.5)/ 𝑤𝑒𝑒𝑘 

(Dénes et al. , 2019. ) 

𝑟𝑜  Release rate from quarantine 
1.107(0.5
− 2)/ 𝑤𝑒𝑒𝑘 

(Dénes et al. , 2019. ) 



Journal of Natural Science Review, 2(3), 97-120 

 
103 

𝑘𝑂
𝑄  Average per capita contact rate during 

quarantine 
7.97/𝑤𝑒𝑒𝑘 

(Dénes et al. , 2019. ) 

1/𝑝 Incubation period 1.498 𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑣 Rate of recovery 0.362/ 𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑚 Rate of Ebola-induced death 0.797/ 𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

𝑤 Rate of hospitalization 1.58/𝑤𝑒𝑒𝑘 (Dénes et al. , 2019. ) 

1/𝑓 Average duration from death due to Ebola to 
burial 

0.762 𝑤𝑒𝑒𝑘𝑠 
(Dénes et al. , 2019. ) 

𝜙1 Vaccination rate of non-quarantined susceptible 
persons 

0.002(0 − 0.01) Assumed 

𝜙2 Vaccination rate of quarantined susceptible 
persons 

0.002(0 − 0.01) Assumed 

𝜔 Vaccine wear − off rate 0.0191/ week (Brettin et al. 2018) 

𝛼1 Inhibition rate by susceptible persons 
(quarantined) 

0.5/ 𝑤𝑒𝑒𝑘 Assumed 

𝛼2 Inhibition rate due to quarantined symptomatic 
individuals 

0.2/ 𝑤𝑒𝑒𝑘 Assumed 

The Model (3) is a modification of the Model for quarantine and isolation described by 

(Dénes et al., 2019.) among other things: 

1. Individuals must be in the infectious compartment to infect others; this Model does 

not consider asymptomatic infections. 

2. The infection is not vertically transmitted from the mother to the unborn baby. 

3. Quarantine and vaccination were the intervention strategies used in the Model. 

4. Quarantine implementation is assumed to be imperfect 

5. Recovered individuals do not become infected again; there is no reinfection. 

6. Treated (hospitalized) individuals can still transmit infection. 



Journal of Natural Science Review, 2 (3), 97-120 

104 

7. Infection-induced death occurs only in infectious compartments, and all 

compartments have the same natural death rate. 

8. People need to be in the infectious compartment to infect others. 

FINDINGS 

Basic qualitative properties 

Here, we present Model (3) 's fundamental qualitative properties, focusing on its solutions' 

non-negativity and boundedness. 

Lemma 1: Assume that the initial values 𝑆𝑈(0), 𝑆𝑄(0), 𝐸𝑈(0),𝐸𝑄(0),𝑉𝑈(0), 𝑉𝑄(0),𝐼𝑈(0), 

 𝐼𝑇(0), 𝐼𝑄(0), 𝑅(0), 𝐷(0), and 𝐵(0) are non-negative for model (3). Then, for all times 𝑡 > 0, 

the solution to Equations (3) with these initial values will remain non-negative and bounded. 

Proof: We will use a proof by contradiction to establish the non-negative nature of the 

solution. Suppose that, for the sake of contradiction, the claim is false. That is, assume there 

is a point 𝑡 = 𝑡∗ ≥ 0 such that at 𝑡 = 𝑡∗, at least one variable in Model (2) becomes negative, 

whereas all other variables in the Model are non-negative for 0 ≤ 𝑡 ≤ 𝑡∗. For instance, 

consider 𝑆𝑈(𝑡) as a state variable. If 𝑆𝑈(𝑡) = 0, then 𝑆𝑈
′ (𝑡) is positive. Therefore, once 𝑆𝑈(𝑡) 

reaches 0, it cannot become negative. Similarly, the non-negativity of all other state variables 

can be proved using the same reasoning. It is helpful to define and demonstrate that the 

solutions of model (3) are bounded. 

𝑁(𝑡) = 𝑆𝑈(𝑡) + 𝑆𝑄(𝑡) + 𝐸𝑈(𝑡) + 𝐸𝑄(𝑡) + 𝑉𝑈(𝑡) + 𝑉𝑄(𝑡) + 𝐼𝑈(𝑡) + 𝐼𝑇(𝑡) + 𝐼𝑄(𝑡)

+ 𝑅(𝑡) + 𝐷(𝑡) 

(5) 

Let 𝛿 be defined as 𝛿 = min{𝑓, 𝑑}. Therefore, 

𝑁′(𝑡) = Π − 𝑑[𝑆𝑈(𝑡) + 𝑆𝑄(𝑡) + 𝑉𝑈(𝑡) + 𝑉𝑄(𝑡) + 𝐸𝑈(𝑡) + 𝐸𝑄(𝑡) + 𝐼𝑈(𝑡) + 𝐼𝑇(𝑡)

+𝐼𝑄(𝑡) + 𝑅(𝑡)] − 𝑓𝐷(𝑡) ≤ Π − 𝛿𝑁(𝑡)
 (6) 

Which implies limsup𝑡→∞  𝑁(𝑡) ≤
Π

𝛿
.  Since all solutions of the Model are non-negative, 

the second part of the lemma is proven. The feasible region for model (3) is defined as follows: 

Γ = {(𝑆𝑈(𝑡), 𝑆𝑄(𝑡), 𝑉𝑈(𝑡), 𝑉𝑄(𝑡), 𝐸𝑈(𝑡), 𝐸𝑄(𝑡), 𝐼𝑈(𝑡), 𝐼𝑇(𝑡), 𝐼𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡)) ∈ ℝ+
11:

𝑁(𝑡) ≤
Π

𝛿
}

 (7) 

From the preceding analysis, the following result can be inferred. 

Lemma 2. For model (3), with any non-negative initial condition in  ℝ+
11, the region 

mentioned above Γ is positively invariant. 

Disease-Free Equilibrium (DFE) 

To determine the DFE of the Model (3), we consider the disease-free system 

corresponding to this Model, which is defined as: 
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𝑆𝑈
′ (𝑡) = Π − 𝜙1𝑆𝑈(𝑡) + 𝜔𝑉𝑈(𝑡) − 𝑑𝑆𝑈(𝑡) 

𝑉𝑈
′ (𝑡) = 𝜙1𝑆𝑈(𝑡) − 𝜔𝑉𝑈(𝑡) − 𝑑𝑉𝑈(𝑡) 

(8) 

When all other state variables are zero, i.e. 

 𝑆𝑄(𝑡) =  𝐸𝑈(𝑡) = 𝐸𝑄(𝑡) =, 𝑉𝑄(𝑡) = 𝐼𝑈(𝑡) = 𝐼𝑇(𝑡) =  𝐼𝑄(𝑡) = 𝑅(𝑡) =  𝐷(𝑡) = 0 (9) 

Then, the fixed points of the disease-free system (3) can be determined as follows: 

Π − 𝜙1𝑆𝑈(𝑡) + 𝜔𝑉𝑈(𝑡) − 𝑑𝑆𝑈(𝑡) = 0 

Φ1𝑆𝑈(𝑡) − 𝜔𝑉𝑈(𝑡) − 𝑑𝑉𝑈(𝑡) = 0 

(10) 

Solving the system of equation (4) yields: 

𝑆𝑈(𝑡) =
(𝜔 + 𝑑)Π

𝑑(𝜙1 + 𝜔 + 𝑑)
, and  𝑉𝑈(𝑡) =

𝜙1Π

𝑑(𝜙1 + 𝜔 + 𝑑)
 

Hence, let 𝜀0 = (𝑆𝑈
∗ , 0,0,0, 𝑉𝑈

∗, 0,0,0,0,0,0) denote the (DFE) of (3): 

𝜀0 = (
(𝜔 + 𝑑)Π

𝑑(𝜙1 + 𝜔 + 𝑑)
, 0,0,0,

𝜙1Π

𝑑(𝜙1 + 𝜔 + 𝑑)
, 0,0,0,0,0,0)       (11) 

Stability of DFE and 𝓡𝟎 

To calculate ℛ0 and prove the local stability of the DFE for model (3), we utilize the Next-

Generation Matrix (NGM) approach described by (Diekmann et al., 2010). The infection 

compartments in the Model (3) are  𝐸𝑈, 𝐸𝑄 , 𝐼𝑈, 𝐼𝑄 , and 𝐷. The disease-free compartments are 

𝑆𝑈, 𝑆𝑄 , 𝑉𝑈, 𝑉𝑄 and 𝑅. The next-generation matrices, including 𝑉, for the Model are provided 

as follows: 

𝑁𝐺𝑀 =

(

 
 
 
 
 

0 0
𝑏𝑘(1−𝑞)(𝑑+𝜔)

𝑑+𝜔+𝜙1

𝑏𝑘(1−𝑞)(𝑑+𝜔)𝜂𝑇

𝑑+𝜔+𝜙1

𝑏𝑘𝑞(𝑑+𝜔)𝜂𝑄

𝑑+𝜔+𝜙1

𝑏𝑘(1−𝑞)(𝑑+𝜔)𝜂𝐷

𝑑+𝜔+𝜙1

0 0
𝑏𝑘𝑞(𝑑+𝜔)

𝑑+𝜔+𝜙1

𝑏𝑘𝑞(𝑑+𝜔)𝜂𝑇

𝑑+𝜔+𝜙1

𝑏𝑘𝑞(𝑑+𝜔)𝜂𝑄

𝑑+𝜔+𝜙1

𝑏𝑘𝑞(𝑑+𝜔)𝜂𝐷

𝑑+𝜔+𝜙1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 

, and 

𝑉 =

(

 
 
 

𝑑 + 𝑝 0 0 0 0 0
0 𝑑 + 𝑝 0 0 0 0

−𝑝 0 𝑑 + 𝑚 + 𝑣 + 𝑤 0 0 0
0 0 −𝑤 𝑑 + 𝑚 + 𝑣 −𝑤 0
0 −𝑝 0 0 𝑑 + 𝑚 + 𝑣 + 𝑤 0
0 0 −𝑚 −𝑚 −𝑚 𝑓)

 
 
 

 

To estimate the basic reproductive value,𝑅0 defined as 𝑅0 = 𝜌(𝐹𝑉−1), we first need to 

calculate the matrix 𝑉−1. Matrix 𝑉−1 = (𝐴6×3 𝐵6×3) is given by: 
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𝐴 =

(

 
 
 
 
 
 
 

1

𝑑+𝑝
0 0

0
1

𝑑+𝑝
0

𝑝

(𝑑+𝑝)(𝑑+𝑚+𝑣+𝑤)
0

1

𝑑+𝑚+𝑣+𝑤
𝑝

(𝑑+𝑝)(𝑑+𝑚+𝑣)(𝑑+𝑚+𝑣+𝑤)

𝑝𝑤

(𝑑+𝑝)(𝑑+𝑚+𝑣)(𝑑+𝑚+𝑣+𝑤)

𝑤

(𝑑+𝑚+𝑣)(𝑑+𝑚+𝑣+𝑤)

0
𝑚𝑝

(𝑑+𝑝)(𝑑+𝑚+𝑣+𝑤)
0

𝑚𝑝

𝑓(𝑑+𝑝)(𝑑+𝑚+𝑣)

𝑚

𝑓(𝑑+𝑝)(𝑑+𝑚+𝑣)

𝑚

𝑓(𝑑+𝑚+𝑣) )

 
 
 
 
 
 
 

, and 

𝐵 =

(

 
 
 
 
 
 
 

0 0 0
0 0 0
0 0 0
1

𝑑 + 𝑚 + 𝑣

𝑤

(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)
0

0
1

𝑑 + 𝑚 + 𝑣 + 𝑤
0

𝑚

𝑓(𝑑 + 𝑚 + 𝑣)

𝑚

𝑓(𝑑 + 𝑚 + 𝑣)

1

𝑓)

 
 
 
 
 
 
 

 

Mathematica was used to perform the computations. Similarly, we can compute the 

matrix 𝐹𝑉−1 and determine its spectral radius, which gives us the reproduction number. 

Therefore, ℛ0 for Model (2) can be obtained as 

ℛ0 =
𝑏𝑘𝑝(𝑑 + 𝜔)(𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)𝜂𝐷 + 𝑓(𝑑 + 𝑚 + 𝑣)(1 − 𝑞 + 𝑞𝜂𝑄) + 𝑓𝑤𝜂𝑇)

𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑑 + 𝜔 + 𝜙1)
 

Which can be written as,  

ℛ0 =
𝑏𝑘𝑝 (𝑚𝜂𝐷(𝑚 + 𝑣 + 𝑤 + 𝑑) + 𝑞𝑓(𝑚𝜂𝑄 + 𝑣𝜂𝑄 + 𝑑𝜂𝑄 + 𝑤𝜂𝑇) + (1 − 𝑞)𝑓(𝑚 + 𝑣 + 𝑤𝜂𝑇 + 𝑑)) (𝑑 + 𝜔)

𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑑 + 𝜔 + 𝜙1)
 

 
Lemma 3: If ℛ0 < 1, the DFE of the Model (3), as specified by (11), is LAS. Conversely, 

if ℛ0 > 1, DFE becomes unstable.  

According to this lemma, if the initial values of the state variables are within the region 

of attraction of the DFE (𝜀0), the infection can be eliminated from the community when the 

fundamental reproductive value is less than one ( ℛ0 < 1). 

Backward bifurcation analysis 

In this part, we will establish the Endemic Steady State (EE) presence for model (3). We 

employ the center manifold theory to demonstrate that when ℛ0 = 1, model (3) undergoes 

backward branching. We substituted the following variables: 

𝑆𝑈(𝑡) = 𝑦1, 𝑆𝑄(𝑡) = 𝑦2, 𝐸𝑈(𝑡) = 𝑦3, 𝐸𝑄(𝑡) = 𝑦4, 𝑉𝑈(𝑡) = 𝑦5, 𝑉𝑄(𝑡) = 𝑦6, 𝐼𝑈(𝑡) = 𝑦7, 

𝐼𝑇(𝑡) = 𝑦8, 𝐼𝑄(𝑡) = 𝑦9, 𝑅(𝑡) = 𝑦10, and 𝐷(𝑡) = 𝑦11. Additionally, let 

𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10, 𝑦11)
𝑇 
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Therefore, model (3) can be represented as 
𝑑𝑌

𝑑𝑡
= 𝐺(𝑌), where 

𝐺 = (𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9, 𝑔10, 𝑔11) 

Hence, 

𝑑𝑦1

𝑑𝑡
= 𝑔1 = Π − 𝑘𝑏𝑦1𝜆 − 𝑞𝑘(1 − 𝑏)𝑦1𝜆 + 𝑟𝑄𝑦2 − 𝜙1𝑦1 + 𝜔𝑦5 − 𝑑𝑦1 

𝑑𝑦2

𝑑𝑡
= 𝑔2 = 𝑞𝑘(1 − 𝑏)𝑦1𝜆 −

𝑏𝑘𝑄
𝑄𝑦2𝑦9

(1 + 𝛼1𝑦2)(1 + 𝛼2𝑦9)
− 𝑟𝑄𝑦2 − 𝜙2𝑦2 + 𝜔𝑦6 − 𝑑𝑦2 

𝑑𝑦3

𝑑𝑡
= 𝑔3 = (1 − 𝑞)𝑘𝑏𝑦1𝜆 − 𝑝𝑦3 − 𝑑𝑦3 

𝑑𝑦4

𝑑𝑡
= 𝑔4 = 𝑞𝑘𝑏𝑦1𝜆 +

𝑏𝑘𝑄
𝑄𝑦2𝑦9

(1 + 𝛼1𝑦2)(1 + 𝛼2𝑦9)
− 𝑝𝑦4 − 𝑑𝑦4 

𝑑𝑦5

𝑑𝑡
= 𝑔5 = 𝜙1𝑦1 − 𝜔𝑦5 − 𝑑𝑦5 

𝑑𝑦6

𝑑𝑡
= 𝑔6 = 𝜙2𝑦2 − 𝜔𝑦6 − 𝑑𝑦6 

𝑑𝑦7

𝑑𝑡
= 𝑔7 = 𝑝𝑦3 − (𝑣 + 𝑚 + 𝑤)𝑦7 − 𝑑𝑦7 

𝑑𝑦8

𝑑𝑡
= 𝑔8 = 𝑤(𝑦7 + 𝑦9) − (𝑣 + 𝑚)𝑦8 − 𝑑𝑦8 

𝑑𝑦9

𝑑𝑡
= 𝑔9 = 𝑝𝑦4 − (𝑣 + 𝑚 + 𝑤)𝑦9 − 𝑑𝑦9 

𝑑𝑦10

𝑑𝑡
= 𝑔10 = 𝑣(𝑦7 + 𝑦8 + 𝑦9) − 𝑑𝑦10 

𝑑𝑦11

𝑑𝑡
= 𝑔11 = 𝑚(𝑦7 + 𝑦8 + 𝑦9) − 𝑓𝑦11 

(12) 

Where,  

𝜆 =
𝑦7 + 𝜂𝑇𝑦8 + 𝜂𝑄𝑦9 + 𝜂𝐷𝑦11

𝑦1 + 𝑦3 + 𝑦5 + 𝑦7 + 𝑦8 + 𝑦10 + 𝑦11
 

The Jacobian matrix of system (12) at the corresponding disease-free equilibrium (𝜀0) is 

expressed as: 

𝐽(𝜀0) = [𝑀11×6 𝑈11×6] 

 Where, 
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𝑀 =

(

 
 
 
 
 
 
 
 
 

−𝑑 − 𝜙1 𝑟𝑄 0 0 𝜔 0

0 −𝑑 − 𝑟𝑄 − 𝜙2 0 0 0 𝜔

0 0 −𝑑 − 𝑝 0 0 0
0 0 0 −𝑑 − 𝑝 0 0
𝜙1 0 0 0 −𝑑 − 𝜔 0
0 𝜙2 0 0 0 −𝑑 − 𝜔
0 0 𝑝 0 0 0
0 0 0 0 0 0
0 0 0 𝑝 0 0
0 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 
 
 
 
 
 

  
, and 

 

  

𝑈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑘(𝑏(−1 + 𝑞) − 𝑞)𝑦1

∗

𝑦1
∗ + 𝑦5

∗

𝑘(𝑏(−1 + 𝑞) − 𝑞)𝜂Τ𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑘(𝑏(−1 + 𝑞) − 𝑞)𝜂Q𝑦1
∗

𝑦1
∗ + 𝑦5

∗
0

𝑘(𝑏(−1 + 𝑞) − 𝑞)𝜂D𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑘(1 − 𝑏)𝑞𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑘(1 − 𝑏)𝑞𝜂Τ𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑘(1 − 𝑏)𝑞𝜂Q𝑦1
∗

𝑦1
∗ + 𝑦5

∗
0

𝑘(1 − 𝑏)𝑞𝜂D𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑘𝑏(1 − 𝑞)𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑏𝑘𝑞𝑦1
∗

𝑦1
∗ + 𝑦5

∗

0
0

−𝑑 − 𝑚 − 𝑣 − 𝑤
𝑤
0
𝑣
𝑚

𝑘𝑏(1 − 𝑞)𝜂Τ𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑏𝑘𝑞𝜂Τ𝑦1
∗

𝑦1
∗ + 𝑦5

∗

0
0
0

−𝑑 − 𝑚 − 𝑣
0
𝑣
𝑤

𝑏𝑘(1 − 𝑞)𝜂Q𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑏𝑘𝑞𝜂Q𝑦1
∗

𝑦1
∗ + 𝑦5

∗

0
0
0
𝑤

−𝑑 − 𝑚 − 𝑣 − 𝑤
𝑣
𝑚

0
0
0
0
0
0
0

−𝑑
0

𝑏𝑘(1 − 𝑞)𝜂D𝑦1
∗

𝑦1
∗ + 𝑦5

∗

𝑏𝑘𝑞𝜂D𝑦1
∗

𝑦1
∗ + 𝑦5

∗

0
0
0
0
0
0

−𝑓 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Let's consider the case where ℛ0 = 1. Let (𝑏 ⋅ 𝑘) be a bifurcation parameter. Solving for 

𝛽∗ = 𝑏 ⋅ 𝑘 gives: 

𝛽∗ =
𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑑 + 𝜔 + 𝜙1)

𝑝(𝑚𝜂𝐷(𝑚 + 𝑣 + 𝑤 + 𝑑) + 𝑞𝑓(𝑚𝜂𝑄 + 𝑣𝜂𝑄 + 𝑑𝜂𝑄 + 𝑤𝜂𝑇) + (1 − 𝑞)𝑓(𝑚 + 𝑣 + 𝑤𝜂𝑇 + 𝑑)(𝑑 + 𝜔)
 

Near 𝑏 ⋅ 𝑘 = 𝛽∗, system dynamics can be analyzed using center manifold theory. This is 

because at 𝑏 ⋅ 𝑘 = 𝛽∗, all eigenvalues of the linearization matrix of the transformed system 

(6), except for one with a zero real part, have negative real parts. We obtain the right 

eigenvector 𝑤 = (𝑤1, 𝑤2, … , 𝑤11)
𝑇 of 𝐽(𝜀0)|𝛽∗   as follows: 

𝑤1 =
𝑄1

𝑑𝑚𝑝(𝑆∗ + 𝑉∗)(𝑑 + 𝜔 + 𝜙1)(𝑑 + 𝑚 + 𝑣 + 𝑤)((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)
 

With, 

𝑄1 = (𝑑 + 𝜔)(𝑆∗(𝑑(𝑑 + 𝜔 + 𝜙2)(𝑓(𝑞 − 1)(𝑑 + 𝑚 + 𝑣)(𝑑2 + 𝑑(𝑚 + 𝑝 + 𝑣 + 𝑤) + 𝑝(𝑘𝑞

+𝑚 + 𝑣 + 𝑤)) − 𝑘𝑝𝑞(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝑞𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)) − 𝑓

(𝑑 + 𝑝)(𝑑 + 𝜔)𝑟𝑄(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)) + 𝑓𝑉∗(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚

+𝑣 + 𝑤)(𝑑(𝑞 − 1)(𝑑 + 𝜔 + 𝜙2) + (−𝑑 − 𝜔)𝑟𝑄))

 

Similarly, 
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𝑤2 = −
𝑄2

𝑚𝑝(𝑆∗ + 𝑉∗)(𝑑 + 𝑚 + 𝑣 + 𝑤)((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)
 

With, 

𝑄2 =𝑞(𝑑 + 𝜔)(𝑆∗(𝑓(𝑑 + 𝑚 + 𝑣)(𝑑2 + 𝑑(𝑚 + 𝑝 + 𝑣 + 𝑤) + 𝑝(𝑘(𝑞 − 1) + 𝑚 + 𝑣 + 𝑤)) −

𝑘𝑝(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝑞𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)) + 𝑓𝑉∗(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)

 (𝑑 + 𝑚 + 𝑣 + 𝑤)).

𝑤3 = −
𝑓(𝑞 − 1)(𝑑 + 𝑚 + 𝑣)

𝑚𝑝
,  𝑤4 =

𝑓𝑞(𝑑 + 𝑚 + 𝑣)

𝑚𝑝
.

𝑤5 =
𝑄3

(𝑑 + 𝜔 + 𝜙1)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓(𝑑 + 𝑚 + 𝑣)(𝑞𝜂𝑄 − 𝑞 + 1) + 𝑓𝑤𝜂𝑇)

 

With, 

𝑄3 = 𝜙1 (−
𝑘𝑞𝑆∗(𝑑 + 𝜔 + 𝜙2)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓(𝑑 + 𝑚 + 𝑣)(𝑞𝜂𝑄 − 𝑞 + 1) + 𝑓𝑤𝜂𝑇)

2

𝑚(𝑆∗ + 𝑉∗)(𝑑 + 𝑚 + 𝑣 + 𝑤)((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)

 −
𝑓𝑞(𝑑 + 𝑝)(𝑑 + 𝜔)𝜂𝐷𝑟𝑄(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)

𝑑𝑝((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)

 +
𝑓(𝑞 − 1)(𝑑 + 𝑝)𝜂𝐷(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)

𝑑𝑝

 −
𝑓2𝑞(𝑑 + 𝑝)(𝑑 + 𝜔)𝑟𝑄(𝑑 + 𝑚 + 𝑣)((𝑑 + 𝑚 + 𝑣)(𝑞𝜂𝑄 − 𝑞 + 1) + 𝑤𝜂𝑇)

𝑑𝑚𝑝((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)

+
𝑓2(𝑞 − 1)(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)((𝑑 + 𝑚 + 𝑣)(𝑞𝜂𝑄 − 𝑞 + 1) + 𝑤𝜂𝑇)

𝑑𝑚𝑝
)

𝑤6 = −
𝑄4

𝑚𝑝(𝑆∗ + 𝑉∗)(𝑑 + 𝑚 + 𝑣 + 𝑤)((𝑑 + 𝜔)(𝑑 + 𝑟𝑄) + 𝑑𝜙2)

 

With, 

𝑄4 =𝑞𝜙2(𝑆
∗(𝑓(𝑑 + 𝑚 + 𝑣)(𝑑2 + 𝑑(𝑚 + 𝑝 + 𝑣 + 𝑤) + 𝑝(𝑘(𝑞 − 1) + 𝑚 + 𝑣 + 𝑤)) − 𝑘𝑝(𝑚𝜂𝐷

(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝑞𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)) + 𝑓𝑉∗(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)) .
 

𝑤7 = −
𝑓(𝑞 − 1)(𝑑 + 𝑚 + 𝑣)

𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)
,        𝑤8 =

𝑓𝑤

𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)

𝑤9 =
𝑓𝑞(𝑑 + 𝑚 + 𝑣)

𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)
,         𝑤10 =

𝑓𝑣

𝑑𝑚
,  𝑤11 = 1

 

Similarly, 𝐽(𝜀01)|𝛽∗  has a left eigenvector,𝑣 expressed as 𝑣 = (𝑣1, 𝑣2, … , 𝑣11)
𝑇, such that 

𝑣1 = 𝑣2 = 𝑣5 = 𝑣6 = 𝑣10 = 0 

And, 
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𝑣3 =
𝑚𝑝(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓(𝑑 + 𝑚 + 𝑤𝜂𝑇 + 𝑣))

𝑄6

𝑣4 =
𝑚𝑝(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)

𝑄6

𝑣8 =
𝑚(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)

𝑄6

𝑣9 =
𝑚(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤) + 𝑓𝜂𝑄(𝑑 + 𝑚 + 𝑣) + 𝑓𝑤𝜂𝑇)

𝑄6

𝑣11 =
𝑚(𝑑 + 𝑝)𝜂𝐷(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)2

𝑄6

 

Where, 

𝑄6 =𝑚𝜂𝐷(𝑑 + 𝑚 + 𝑣 + 𝑤)2(𝑑2 + 𝑑(2𝑓 + 𝑚 + 𝑝 + 𝑣) + 𝑓(𝑚 + 𝑝 + 𝑣) + 𝑝(𝑚 + 𝑣)) + 𝑓2(𝑞

𝜂𝑄(𝑑 + 𝑚 + 𝑣)2(2𝑑 + 𝑚 + 𝑝 + 𝑣 + 𝑤) − (𝑞 − 1)(𝑑 + 𝑚 + 𝑣)2(2𝑑 + 𝑚 + 𝑝 + 𝑣 + 𝑤)

+𝑤𝜂𝑇(𝑤(2𝑑 + 𝑚 + 𝑝 + 𝑣) + (𝑑 + 𝑚 + 𝑣)(3𝑑 + 𝑚 + 2𝑝 + 𝑣)))

 

Thus, the related bifurcation coefficient 𝑎 = ∑𝑘,𝑖,𝑗=1
11  𝑣𝑘𝑤𝑖𝑤𝑗

∂2𝑔𝑘

∂𝑦𝑖 ∂𝑦𝑗
(0,0) is given by: 

𝑎 =
1

(𝑆∗ + 𝑉∗)2
2𝛽∗(𝑞 − 1)𝑣3(𝑆

∗(𝑤3 + 𝑤5 + 𝑤7 + 𝑤8 + 𝑤10 + 𝑤11) − 𝑉∗𝑤1)(𝑤11𝜂𝐷

+𝑤9𝜂𝑄 + 𝑤8𝜂𝑇 + 𝑤7) − 2𝑣4(−𝑉∗(2𝑏𝑘𝑄
𝑄
𝑆∗𝑤2𝑤9 + 𝛽∗𝑞𝑤1(𝑤11𝜂𝐷 + 𝑤9𝜂𝑄 + 𝑤8

𝜂𝑇 + 𝑤7)) − 𝑏𝑘𝑄
𝑄(𝑆∗)2𝑤2𝑤9 − 𝑏𝑘𝑄

𝑄(𝑉∗)2𝑤2𝑤9 + 𝛽∗𝑞𝑆∗𝑤3(𝑤11𝜂𝐷 + 𝑤9𝜂𝑄 + 𝑤8

𝜂𝑇 + 𝑤7) + 𝛽∗𝑞𝑆∗𝑤5(𝑤11𝜂𝐷 + 𝑤9𝜂𝑄 + 𝑤8𝜂𝑇 + 𝑤7) + 𝛽∗𝑞𝑆∗𝑤11𝑤7𝜂𝐷 + 𝛽∗𝑞𝑆∗

𝑤11
2 𝜂𝐷 + 𝛽∗𝑞𝑆∗𝑤8𝑤11𝜂𝐷 + 𝛽∗𝑞𝑆∗𝑤10𝑤11𝜂𝐷 + 𝛽∗𝑞𝑆∗𝑤9𝑤7𝜂𝑄 + 𝛽∗𝑞𝑆∗𝑤8𝑤9𝜂𝑄

 +𝛽∗𝑞𝑆∗𝑤9𝑤10𝜂𝑄 + 𝛽∗𝑞𝑆∗𝑤9𝑤11𝜂𝑄 + 𝛽∗𝑞𝑆∗𝑤8𝑤7𝜂𝑇 + 𝛽∗𝑞𝑆∗𝑤8
2𝜂𝑇 + 𝛽∗𝑞𝑆∗

𝑤8𝑤10𝜂𝑇 + 𝛽∗𝑞𝑆∗𝑤8𝑤11𝜂𝑇 + 𝛽∗𝑞𝑆∗𝑤7
2 + 𝛽∗𝑞𝑆∗𝑤8𝑤7 + 𝛽∗𝑞𝑆∗𝑤10𝑤7 + 𝛽∗𝑞𝑆∗𝑤11𝑤7

 

(13) 

Since the DFE (𝜀0) of model (3) is LAS, the bifurcation coefficient (𝑏) in Theorem 1 for 

this Model is always positive (𝑏 > 0). Thus, the sign of (𝑎) can determine the direction 

bifurcation in the Model as ℛ0 = 1, and the system (12) will experience backward bifurcation 

at ℛ0 = 1, if 𝑎 is positive. 

Theorem 1. A positive bifurcation coefficient 𝑎, defined by equation (13), indicates that 

Model (6), or equivalently Model (3), experiences backward bifurcation at ℛ0 = 1. 

Remark 1. The left and right eigenvectors associated with the zero eigenvalues 

of  𝐽(𝜀0)|𝛽∗  , which is the Jacobian of the system (12), along with the bifurcation coefficient 𝑎 

given in equation (13), are provided below; utilizing the parameter values specified in Table 1, 

we derive: 

𝑤 = (−3215.53,4.80,2.50,0.35, −327.44,0.48,0.60,0.94,0.08,1103.55,1)𝑇  

𝑣 = (0,0,0.18,0.16,0,0,0.18,0.17,0.16,0,0.19)𝑇 , and 𝑎 = 0.0611806 
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Hence, for ℛ0 = 1, model (3) experiences backward bifurcation. 

Non-existence of backward bifurcation 

Here, we analyzed the scenario in which model (3) loses its backward bifurcation property. 

Consider a specific case of the Model for 𝑞 = 0, which is the quarantine-free Model given 

below: 

𝑆𝑈
′ (𝑡) = Π − 𝑘𝑏𝑆𝑈(𝑡)𝜆(𝑡) − 𝜙1𝑆𝑈(𝑡) + 𝜔𝑉𝑈(𝑡) − 𝑑𝑆𝑈(𝑡) 

𝐸𝑈
′ (𝑡) = 𝑘𝑏𝑆𝑈(𝑡)𝜆(𝑡) − 𝑝𝐸𝑈(𝑡) − 𝑑𝐸𝑈(𝑡) 

𝑉𝑈
′ (𝑡) = 𝜙1𝑆𝑈(𝑡) − 𝜔𝑉𝑈(𝑡) − 𝑑𝑉𝑈(𝑡) 

𝑉𝑈
′ (𝑡) = 𝜙1𝑆𝑈(𝑡) − 𝜔𝑉𝑈(𝑡) − 𝑑𝑉𝑈(𝑡) 

𝐼𝑈
′ (𝑡) = 𝑝𝐸𝑈(𝑡) − (𝑣 + 𝑚 + 𝑤)𝐼𝑈(𝑡) − 𝑑𝐼𝑈(𝑡) 

𝐼𝑇
′ (𝑡) = 𝑤𝐼𝑈(𝑡) − (𝑣 + 𝑚)𝐼𝑇(𝑡) − 𝑑𝐼𝑇(𝑡) 

𝑅′(𝑡) = 𝑣(𝐼𝑈(𝑡) + 𝐼𝑇(𝑡)) − 𝑑𝑅(𝑡) 

𝐷′(𝑡) = 𝑚(𝐼𝑈(𝑡) + 𝐼𝑇(𝑡)) − 𝑓𝐷(𝑡) 

(14) 

Where, 

𝜆(𝑡) =
𝐼𝑈(𝑡) + 𝜂𝑇𝐼𝑇(𝑡) + 𝜂𝐷𝐷(𝑡)

𝑁𝑈(𝑡)
 

We apply the center manifold method to demonstrate that the bifurcation direction for 

model (14) is forward when the reproduction number is one. When 𝑞 = 0, Model (3) no longer 

exhibits the backward bifurcation property. For model (12), the primary reproductive value 

and the DFE are defined as follows: 

 𝜀01 = (𝑆𝑈
∗ , 0, 𝑉𝑈

∗, 0,0,0,0)  

 
 𝑆𝑈

∗ =
(𝜔 + 𝑑)𝛱

𝑑(𝜙1 + 𝜔 + 𝑑)
 

 

 
 𝑉𝑈

∗ =
𝜙1𝛱

𝑑(𝜙1 + 𝜔 + 𝑑)
 

 

And, 

ℛ01 =
𝑏𝑘𝑝(𝑚𝜂𝐷(𝑚 + 𝑣 + 𝑤 + 𝑑) + 𝑓(𝑚 + 𝑣 + 𝑤𝜂𝑇 + 𝑑))(𝑑 + 𝜔)

𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑑 + 𝜔 + 𝜙1)
 

Let (𝑏 ⋅ 𝑘) be a bifurcation parameter. 𝛽∗ = 𝑏 ⋅ 𝑘, can be obtained by solving ℛ01 = 1. 

𝛽∗ =
𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤)(𝑑 + 𝜔 + 𝜙1)

𝑝(𝑚𝜂𝐷(𝑚 + 𝑣 + 𝑤 + 𝑑) + 𝑓(𝑚 + 𝑣 + 𝑤𝜂𝑇 + 𝑑))(𝑑 + 𝜔)
 

We demonstrated that when 𝑏 ⋅ 𝑘 = 𝛽∗, all eigenvalues of the Jacobian Model (8) at the 

corresponding DFE, 𝐽(𝜀01)|𝛽∗  have negative real parts, except for one eigenvalue with a zero 
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real part. The left and right eigenvectors associated with this zero eigenvalue are expressed 

as the right eigenvector is given by 𝑤 = (𝑤1, 𝑤2, … , 𝑤7)
𝑇 , where 

𝑤1 = −
𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)(𝑑 + 𝜔)

𝑑𝑚𝑝(𝑑 + 𝜔 + 𝜙1)
,  𝑤2 =

𝑓(𝑑 + 𝑚 + 𝑣)

𝑚𝑝
 

𝑤3 = −
𝑓(𝑑 + 𝑝)(𝑑 + 𝑚 + 𝑣)𝜙1

𝑑𝑚𝑝(𝑑 + 𝜔 + 𝜙1)
,  𝑤4 =

𝑓(𝑑 + 𝑚 + 𝑣)

𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)

𝑤5 =
𝑓𝑤

𝑚(𝑑 + 𝑚 + 𝑣 + 𝑤)
,  𝑤6 =

𝑓𝑣

𝑑𝑚
,  𝑤7 = 1

 

The left eigenvector is represented as 𝑣 = (𝑣1, 𝑣2, … , 𝑣7)
𝑇, where 

𝑣1 = 𝑣3 = 𝑣6 = 0,   and  𝑣2, 𝑣4, 𝑣5, 𝑣7 > 0 

Consequently, the bifurcation coefficient (𝑎) associated with Theorem 1 is defined as 

follows: 

𝑎 = −

2𝛽∗𝑣2(𝑑 + 𝜔)(𝑑𝑚(𝑑𝑓 + 𝑚𝑝 + 𝑓(𝑚 + 𝑝 + 𝑣))(𝑑 + 𝑚 + 𝑣 + 𝑤)𝜂𝐷 + 𝑓(𝑑2𝑓 +

𝑑𝑚𝑝 + 𝑓𝑝𝑣 + 𝑑𝑓(𝑚 + 𝑝 + 𝑣)(𝑑 + 𝑚 + 𝑣 + 𝑤𝜂𝑇))

𝑚2𝑝(𝑑 + 𝑚 + 𝑣 + 𝑤)𝜋(𝑑 + 𝜔 + 𝜙1)
 

This implies that 𝑎 < 0. According to Theorem 1, the disease-free equilibrium (𝜀01) of 

Model (8) is locally asymptotically stable when ℛ01 < 1. Consequently, this indicates that the 

bifurcation coefficient 𝑏 is more significant than zero. Therefore, in the quarantine-free 

Model, the bifurcation direction was forward. This implies that the backward bifurcation 

characteristic of Model (3) is lost when 𝑞 = 0, allowing for the global stability of the DFE. 

Thus, imperfect (leaky) quarantine in Model (3) leads to backward bifurcation. 

Remark 2. Using the center manifold approach, we have shown that Model (3) 

experiences backward bifurcation when ℛ0 = 1. This phenomenon implies that even when 

the reproductive number ℛ0 is less than one, an unstable (EE) and a stable (DFE) can coexist. 

This phenomenon arises from imperfect quarantine and indicates that while ℛ0 < 1 is 

necessary for adequate infection; it is no longer sufficient. In other words, backward 

bifurcation caused by quarantine creates additional challenges for effectively controlling 

Ebola. The analysis demonstrated that backward bifurcation, absent in the quarantine-free 

Model (12), appears when imperfect quarantine is introduced. 

Analyzing Uncertainty and sensitivity  

The parameter values estimated in the model simulations are subject to uncertainties, 

considering that Model (3) includes several parameters. To address this uncertainty, we 

conducted an analysis using LHS (Latin Hypercube Sampling) with N = 10000 runs.  In this 

analysis, we assumed each parameter followed a uniform distribution, utilizing the 

parameter ranges provided in Table 1. 

The results of the uncertainty analysis, with ℛ0 as the response function with 𝑞 = 0, and 

𝜙1 = 0 (i.e., without considering quarantine and vaccination) shows that the 95% 

Confidence interval for ℛ0 is [0.2,3.62], with a mean value of 1.17. When only quarantine was 
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used as an intervention strategy (i.e.,𝜙1 = 0), the 95% confidence interval for ℛ0 

was [0.2,3.41], with a mean value of 1.12. This indicates a slight reduction in the reproduction 

number; however, it remains above unity. 

When vaccination is considered an intervention strategy (with 𝑞 = 0, meaning no 

quarantine), the uncertainty analysis results in a 95% confidence interval for the 

reproduction number of [0.0001,0.0014], with a mean value of 0.00044. This indicates that 

vaccinating non-quarantined susceptible individuals significantly impacts the infection 

burden and can lower the reproductive value to less than one. 

To identify the parameters that most affect the dynamics of the infection, a sensitivity 

analysis was conducted using the PRCC (Partial Rank Correlation Coefficients) method. This 

analysis ranks the influence of parameters based on how they vary within their associated 

ranges, using the commutative number of new Ebola cases as the outcome (response 

function). 

The analysis revealed that the quarantine effectiveness parameter  (𝜂𝑄), and the 

parameter about the isolation of those who are vulnerable persons (𝑞) had less influence on 

the incidence of new Ebola cases. Furthermore, the simulation indicated that the 

hospitalization rate of individuals had the highest negative partial rank correlation 

coefficient, suggesting that it had the greatest negative effect on the outcome. 

 

Figure 2. Plot of sensitivity analysis for the basic reproduction value ℛ0. 

The PRCCs bar chart is used for sensitivity analysis of the model parameters to 

understand their influence on the model output. The height of each bar indicates the strength 

of the correlation between the parameter and the model output. Parameters with taller bars 

have a stronger influence on the model outcomes. 
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Numerical Simulations  

To further examine the transfer dynamics of the Ebola virus and determine the influence of 

vaccination and isolation measures on the community, we performed numerical simulations 

of the Model. These simulations were conducted using the Mathematica software, with the 

parameter values listed in Table 1. These simulations revealed that vaccinating susceptible 

individuals, particularly non-quarantined susceptible individuals (𝜙1), had the most 

significant influence on the burden of infection (Figures 4 and 5), the quarantine rate of 

vulnerable people (𝑞), and the average quarantine duration (1/𝑟𝑄) significantly affected the 

number of Ebola cases (Figures 3 and 6). Conversely, Figures 7 and 8 demonstrate that the 

contact rate during quarantine (𝜂𝑄)  has a marginal influence on infection obligation. 

 

Figure 3.  Illustrates how various quarantine rates 𝑞 for vulnerable individuals influence the incidence of new Ebola 

cases. 

The figure demonstrates that higher quarantine rates for vulnerable individuals lead to 

decreased peak and overall incidence of new Ebola cases. Increased quarantine rates 

effectively lower disease spread among vulnerable populations. 

 

Figure 4. Illustrates the effect of varying vaccination rates (𝜙1, 𝑎𝑛𝑑 𝜙2) for non-quarantined and quarantined 

vulnerable individuals, respectively, on the incidence of new Ebola cases. 
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The figure shows how vaccination rates for non-quarantined and quarantined individuals 

affect new case incidence. Higher vaccination rates, especially among non-quarantined 

individuals, are more effective in decreasing new cases. 

Figure 5. Demonstrates the comparative effect of different vaccination rates (𝜙1, 𝜙2)—for non-quarantined and 

quarantined vulnerable people, respectively, on the incidence of new Ebola cases. 

The figure illustrates that vaccinating non-quarantined individuals (blue and yellow lines) 

lowers peak Ebola cases more than vaccinating quarantined individuals (green line). The 

lowest peak is when non-quarantined individuals have the highest vaccination rate. 

Figure 6. Demonstrates the influence of the quarantine duration (1/𝑟𝑄) and varying release rates from quarantine 

 (𝑟𝑄) on the incidence of new Ebola cases 

This figure shows that shorter quarantine durations (higher. 𝑟𝑄) lead to higher peaks of 

new cases, while longer durations (lower 𝑟𝑄) result in a lower peak and quicker decline. This 

highlights the importance of appropriate quarantine duration to control the spread of Ebola. 
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Figure 7. Illustrates the influence of varying per capita contact rates in quarantine (𝑘𝑄
𝑄) on the incidence of new 

Ebola cases. 

The figure indicates that higher per capita contact rates within quarantine settings lead 

to higher peaks and a more prolonged incidence of new cases. Reducing contact rates in 

quarantine can significantly decrease the spread of the disease. 

Figure 8. Illustrates the influence of varying rates of (𝜂𝑄), the parameter modifies infectiousness during 

quarantine on the incidence of new Ebola cases 

This figure demonstrates that decreasing the parameter 𝜂𝑄, which modifies 

infectiousness during quarantine and reduces the peak and total number of new cases. Lower 

𝜂𝑄  values make quarantine more effective in controlling the disease spread. 

DISCUSSION  

The quarantine and vaccination of people suspected of exposure to infectious diseases have 

historically been key public health measures to combat the spread of these diseases. In this 

study, we developed the SEIQRD deterministic model established by Dénes et al. (2019) to 

evaluate the population-level effects of quarantine and vaccination on individuals 

potentially exposed to the Ebola virus. Some of the Key features of the Model include the 

explicit representation of quarantine for both susceptible and infected individuals (following 

the approach of Dénes et al., (2019)), the assumption that quarantine is not perfectly 
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effective (allowing for disease transmission during quarantine), and introducing two new 

compartments for vaccinated individuals: one for those who are quarantined and the other 

for those who are not quarantined. Unlike the Model demonstrated by Dénes et al. (2019), 

which uses a standard incidence rate of infection (for quarantined individuals), we employed 

a monotone nonlinear incidence rate (Crowley-Martin type). This approach models the rate 

at which new cases occur over time rather than the cumulative number of cases, thereby 

accounting for the inhibitory effects of behavioral changes among susceptible and infected 

individuals as their numbers increase.  

A detailed theoretical analysis of the stability of the disease-free equilibrium was 

performed. The analysis revealed that the disease-free equilibrium of the Model is locally 

asymptotically stable when the basic reproductive value of the Model ( ℛ0) is smaller than 

one. The epidemiological implication of this result is that if the initial values of the state 

variables are within the region of attraction of disease-free equilibrium, the infection can be 

eliminated from the community when the basic reproductive value is less than one.  

However, if  ℛ0 is greater than one, the DFE becomes unstable, indicating that the infection 

will persist in the population. 

Our analysis indicates that the bifurcation direction is forward without quarantine 

measures, demonstrating the absence of backward bifurcation. This finding suggests that 

the disease-free equilibrium (DFE) remains globally stable, allowing for effective disease 

eradication. However, introducing imperfect or leaky quarantine in Model (3) results in 

backward bifurcation, leading to potential disease persistence despite the basic 

reproductive number being below one. This scenario indicates that while ℛ0 < 1 is critical 

for adequate infection; it is insufficient for disease control. Consequently, the backward 

bifurcation stemming from quarantine complicates the effective management of Ebola. 

A detailed uncertainty analysis conducted using Latin Hypercube Sampling (LHS) with 

10,000 simulations elucidated the impact of parameter variability on the primary 

reproduction number and the effectiveness of different intervention strategies. In the 

absence of interventions, the 95% confidence interval for  ℛ0 spans from 0.2 to 3.62, with 

a mean of 1.17, indicating substantial uncertainty in the potential for disease spread. 

Introducing quarantine as the sole intervention reduces the confidence interval to [0.2,3.41] 

and lowers the mean  ℛ0 to1.12, reflecting a modest decrease but still leaving  ℛ0 above 

one. This finding suggests that quarantine alone is insufficient for disease elimination. 

However, incorporating vaccination significantly lowers  ℛ0, with the 95% confidence 

interval narrowing to[0.0001, 0.0014] and a mean of 0.00044, demonstrating its high 

effectiveness in reducing   ℛ0 below one and potentially ending the epidemic. 

Sensitivity analysis using Partial Rank Correlation Coefficients (PRCC) identified critical 

parameters that significantly affect the incidence of new Ebola cases. Specifically, the 

analysis highlighted that the community contact rate (𝑘), the transmission probability per 

contact (𝛽), and the mean duration before the burial of Ebola-deceased individuals (1/𝑓) 

were the most influential factors contributing to the disease burden. This finding 
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emphasizes the necessity of implementing targeted interventions aimed at reducing 

contact with suspected cases and minimizing burial delays to mitigate the spread of Ebola 

effectively. However, the analysis indicated that the effectiveness of quarantine (𝜂𝑄) and 

the duration of quarantine had a smaller impact on the number of infections compared to 

the modified transmission rate during quarantine and the contact rates among quarantined 

individuals. However, the results suggest that quarantine remains a valuable tool for disease 

control if applied with sufficiently high coverage and effectiveness. However, quarantine 

measures may need to be supplemented with other strategies like vaccination to achieve 

adequate disease elimination. 

CONCLUSION 

In conclusion, the Model emphasizes the importance of vaccination in reducing Ebola virus 

transmission. The analysis demonstrated that quarantine measures alone may not be 

sufficient; however, combined with vaccination, they can significantly reduce infection 

rates. This highlights the enhanced efficacy of integrated strategies compared to isolated 

methods.   

Consequently, control strategies must prioritize the enhancement of vaccination 

coverage. Additionally, reinforcing quarantine measures and limiting interactions during 

quarantine are crucial for decreasing viral transmission. These findings offer significant 

insights for policymakers, aiding in formulating effective intervention plans to manage and 

eradicate viral diseases.  
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