A Study of entomopathogenic nematodes and their role in microbial control of pests

Authors

  • Sayeed Qadir Danishiar Kabul University
  • Mohammad Hussain Falahzadah Kabul University
  • Eustachio Tarasco University of Bari Aldo Moro

DOI:

https://doi.org/10.62810/jnsr.v1i1.10

Keywords:

Entomopathogenic nematodes, Host range, Commercial assessment

Abstract

An essential part of managing insect pests is the use of entomopathogenic nematodes and in preventing environmental contamination. Their use has been increasing in recent years. So far, about 30 to 40 nematode families are in contact with insects and other vertebrates. Among these families, the group widely studied as the so-called "entomopathogenic nematodes," also known as EPN, are Heterorhabditidae and Steinernematidae. Two species of Oscheius (Oscheius chongmingensis and Oscheius carolinensis) have been added in recent years to the EPNs group, and we expect that several species will be added to EPNs. ENP has a wide range of host insects found in a species of EPN that can attack over 250 different kinds of insects from several families. Suitable environments for EPNs include insect hemocoels, soil pores, or river bottoms that grow in contact with these environments. Occurrence, mobility, distribution, and stability of EPN under the influence of several factors, including intrinsic factors such as behavioral, physiological, and genetic characteristics. Biological nature included are hosted and non-host arthropods, predators, parasites, diseases, and aberrant environmental elements like temperature, moisture content, texture, pH, and UV radiation. Proper mass production and application are essential for the biological control effectiveness of entomopathogenic nematodes (EPN). In addition, there is no problem in applying EPNs because they are simple to spray with common equipment and are compatible with almost all chemical fertilizers, but the compatibility is different from chemical pesticides.

Downloads

Download data is not yet available.

References

Ali, F., & Wharton, D. A. (2013). Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Cryobiology, 66(1): 24-29. https://doi.org/10.1016/j.cryobiol.2012.10.004 DOI: https://doi.org/10.1016/j.cryobiol.2012.10.004

Ali, J. G., Alborn, H. T., & Stelinski, L. L. (2010). Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. Journal of Chemical Ecology, 36(4): 361-368. https://doi.org/10.1007/s10886-010-9773-7 DOI: https://doi.org/10.1007/s10886-010-9773-7

Arefin, B., Kucerova, L., Dobes, P., Markus, R., Stranad, H., Wang, Z., Hyrsl, P., Zurovec, M., & Theopold, U (2014). Innate Immunity Genome-Wide Transcriptional Analysis of Drosophila Larvae Infected by Entomopathogenic Nematodes Shows Involvement of Complement , Recognition and Extracellular Matrix Proteins. Journal of Innate Immun, 6: 192–204. https://doi.org/10.1159/000353734 DOI: https://doi.org/10.1159/000353734

Bajc, N., Držaj, U., Trdan, S., & Laznik, Ž. (2017). Compatibility of acaricides with entomopathogenic nematodes (Steinernema and Heterorhabditis). Nematology, 19(8): 891-898. https://doi.org/10.1163/15685411-00003095 DOI: https://doi.org/10.1163/15685411-00003095

Bal, H. K., Acosta, N., Cheng, Z., Grewal, P. S., & Hoy, C. W. (2017). Effect of habitat and soil management on dispersal and distribution patterns of entomopathogenic nematodes. Applied Soil Ecology, 121: 48-59. https://doi.org/10.1016/j.apsoil.2017.08.018 DOI: https://doi.org/10.1016/j.apsoil.2017.08.018

Batalla-Carrera, L., Morton, A., & García-del-Pino, F. (2010). Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. BioControl, 55(4): 523-530. https://doi.org/10.1007/s10526-010-9284-z DOI: https://doi.org/10.1007/s10526-010-9284-z

Bathon, H. (1996). Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Science and Technology, 6(3): 421-434. https://doi.org/10.1080/09583159631398 DOI: https://doi.org/10.1080/09583159631398

Chandler, D., Hay, D., & Reid, A. P. (1997). Sampling and occurrence of entomopathogenic fungi and nematodes in UK soils. Applied Soil Ecology. https://doi.org/10.1016/S0929-1393(96)00144-8 DOI: https://doi.org/10.1016/S0929-1393(96)00144-8

Degenhardt, J., Hiltpold, I., Köllner, T. G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B. E., Ellersieck, M. R., & Turlings, T. C. J. (2009). Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America, 106(32): 13213-13218. https://doi.org/10.1073/pnas.0906365106 DOI: https://doi.org/10.1073/pnas.0906365106

Demarta, L., Hibbard, B. E., Bohn, M. O., & Hiltpold, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122: 32-39. https://doi.org/10.1016/j.jip.2014.08.002 DOI: https://doi.org/10.1016/j.jip.2014.08.002

Dillman, A. R., Guillermin, M. L., Ha, J., Kim, B., Sternberg, P. W., & Hallem, E. A. (2012). Olfaction shapes host – parasite interactions in parasitic nematodes. Current Biology, .https://doi.org/10.1073/pnas.1211436109 DOI: https://doi.org/10.1073/pnas.1211436109

Dillman, A. R., & Sternberg, P. W. (2012). Entomopathogenic nematodes. Current Biology, 430–436. https://doi.org/10.1016/j.cub.2012.03.047 DOI: https://doi.org/10.1016/j.cub.2012.03.047

Dillon, A. B., Rolston, A. N., Meade, C. V., Downes, M. J., & Griffin, C. T. (2008). Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem. Ecological Applications, 18(3): 735-747. https://doi.org/10.1890/07-1009.1 DOI: https://doi.org/10.1890/07-1009.1

Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M., Charles, J. F., Dassa, E., Derose, R., Derzelle, S., Freyssinet, G., Gaudriault, S., Médigue, C., Lanois, A., Powell, K., Siguier, P., Kunst, F. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 21(11): 1307-1313. https://doi.org/10.1038/nbt886 DOI: https://doi.org/10.1038/nbt886

Ebssa, L., Borgemeister, C., & Poehling, H. M. (2006). Simultaneous application of entomopathogenic nematodes and predatory mites to control western flower thrips Frankliniella occidentalis. Biological Control, 39(1): 66-74. https://doi.org/10.1016/j.biocontrol.2006.02.005 DOI: https://doi.org/10.1016/j.biocontrol.2006.02.005

Fenton, A., Gwynn, R. L., Gupta, A., Norman, R., Fairbairn, J. P., & Hudson, P. J. (2002). Optimal application strategies for entomopathogenic nematodes: Integrating theoretical and empirical approaches. Journal of Applied Ecology, 39(3): 481-492. https://doi.org/10.1046/j.1365-2664.2002.00727.x DOI: https://doi.org/10.1046/j.1365-2664.2002.00727.x

Fenton, A., Norman, R., Fairbairn, J. P., & Hudson, P. J. (2000). Modelling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. Journal of Applied Ecology, 37(2): 23-34. https://doi.org/10.1046/j.1365-2664.2000.00494.x DOI: https://doi.org/10.1046/j.1365-2664.2000.00494.x

Filgueiras, C. C., Willett, D. S., Pereira, R. V., Sabino, P. H. de S., Junior, A. M., Pareja, M., & Dickson, D. W. (2017). Parameters affecting plant defense pathway mediated recruitment of entomopathogenic nematodes. Biocontrol Science and Technology, 27(7): 833-843. https://doi.org/10.1080/09583157.2017.1349874 DOI: https://doi.org/10.1080/09583157.2017.1349874

Forst, S., & Nealson, K. (1996). Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews (pp. 111–123). https://doi.org/10.1128/mmbr.60.1.21-43.1996 DOI: https://doi.org/10.1128/MMBR.60.1.21-43.1996

Gaugler, R. (1988). Ecological considerations in the biological control of soil-inhabiting insects with entomopathogenic nematodes. Agriculture, Ecosystems and Environment, 24(1-3): 351-360. https://doi.org/10.1016/0167-8809(88)90078-3 DOI: https://doi.org/10.1016/0167-8809(88)90078-3

Gaugler, R., & Kaya, H. K. (2018). Entomopathogenic nematodes in biological control (pp. 1-356) https://doi.org/10.1201/9781351071741

Gaugler, R., Lewis, E., & Stuart, R. J. (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 109(4): 483-489. https://doi.org/10.1007/s004420050108 DOI: https://doi.org/10.1007/s004420050108

Georgis, R., Koppenhöfer, A. M., Lacey, L. A., Bélair, G., Duncan, L. W., Grewal, P. S., Samish, M., Tan, L., Torr, P., & van Tol, R. W. H. M. (2006). Successes and failures in the use of parasitic nematodes for pest control. Biological Control. https://doi.org/10.1016/j.biocontrol.2005.11.005 DOI: https://doi.org/10.1016/j.biocontrol.2005.11.005

Georgis, R. (2008). Biocontrol Science and Technology Present and future prospects for entomopathogenic nematode products Present and Future Prospects For Entomopathogenic Nematode Products. Biocontrol Science and Technology, 2: 37–41. DOI: https://doi.org/10.1080/09583159209355222

Georgis, R. (2018). Entomopathogenic Nematodes in Biological Control. In Formulation and application technology, 173–192 https://doi.org/10.1201/9781351071741 DOI: https://doi.org/10.1201/9781351071741-12

Georgis, R. & Kaya, H. K. (1998). Formulation of Entomopathogenic Nematodes. Formulation of Microbial Biopesticides 289–308. https://doi.org/10.1007/978-94-011-4926-6_9 DOI: https://doi.org/10.1007/978-94-011-4926-6_9

Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology, 114, 597–604. https://doi.org/10.1017/S0031182097008809

Glazer, I., Alekseev, E., & Samish, M. (2001). Factors Affecting the Virulence of Entomopathogenic Nematodes to Engorged Female Boophilus Annulatus TICKS. Journal of Parasitology, 87(4): 808-812. https://doi.org/10.1645/0022-3395(2001)087[0808:fatvoe]2.0.co;2 DOI: https://doi.org/10.1645/0022-3395(2001)087[0808:FATVOE]2.0.CO;2

Grant, J. A., & Villani, M. G. (2003). Soil Moisture Effects on Entomopathogenic Nematodes. Environmental Entomology, 32(1): 80-87. https://doi.org/10.1603/0046-225x-32.1.80 DOI: https://doi.org/10.1603/0046-225X-32.1.80

Grewal, P. S., Grewal, S. K., Tan, L., & Adams, B. J. (2003). Parasitism of molluscs by nematodes: Types of associations and evolutionary trends. Journal of Nematology, 35(2): 146-156.

Grewal, P. S., De Nardo, E. A. B., & Aguillera, M. M. (2001). Entomopathogenic nematodes: Potential for exploration and use in south America. Neotropical Entomology. https://doi.org/10.1590/S1519-566X2001000200001 DOI: https://doi.org/10.1590/S1519-566X2001000200001

Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y., Yano, J. M., Demarco, S. F., & Sternberg, P. W. (2011). A sensory code for host seeking in parasitic nematodes. Current Biology, 21(5) 377-383. https://doi.org/10.1016/j.cub.2011.01.048 DOI: https://doi.org/10.1016/j.cub.2011.01.048

Helmberger, M. S., Shields, E. J., & Wickings, K. G. (2017). Ecology of belowground biological control: Entomopathogenic nematode interactions with soil biota. Applied Soil Ecology. https://doi.org/10.1016/j.apsoil.2017.10.013 DOI: https://doi.org/10.1016/j.apsoil.2017.10.013

Hiltpold, I., Jaffuel, G., & Turlings, T. C. J. (2015). The dual effects of root-cap exudates on nematodes: From quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. Journal of Experimental Botany, 66(2): 603-611. https://doi.org/10.1093/jxb/eru345 DOI: https://doi.org/10.1093/jxb/eru345

Hua, E., Zhang, Z. N., & Zhang, Y. (2009). Environmental factors affecting nematode community structure in the Changjiang Estuary and its adjacent waters. Journal of the Marine Biological Association of the United Kingdom, 89(1): 109-117. https://doi.org/10.1017/S0025315408002361 DOI: https://doi.org/10.1017/S0025315408002361

Hominick, W. I., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic Nematodes : Biodiversity , Geographical Distribution and the Convention on Biological Diversity. Biocontrol Science and Technology, 6: 317–332. DOI: https://doi.org/10.1080/09583159631307

Ignoffo, C. M. (1992). Environmental Factors Affecting Persistence of Entomopathogens. The Florida Entomologist, 75(4): 516-524. https://doi.org/10.2307/3496133 DOI: https://doi.org/10.2307/3496133

Imperiali, N., Chiriboga, X., Schlaeppi, K., Fesselet, M., Villacrés, D., Jaffuel, G., Bender, S. F., Dennert, F., Blanco-Pérez, R., van der Heijden, M. G. A., Maurhofer, M., Mascher, F., Turlings, T. C. J., Keel, C. J., & Campos-Herrera, R. (2017). Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performance. Frontiers in Plant Science, 8, 340–354. https://doi.org/10.3389/fpls.2017.01809 DOI: https://doi.org/10.3389/fpls.2017.01809

Jaffuel, G., Mäder, P., Blanco-Perez, R., Chiriboga, X., Fliessbach, A., Turlings, T. C. J., & Campos-Herrera, R. (2016). Prevalence and activity of entomopathogenic nematodes and their antagonists in soils that are subject to different agricultural practices. Agriculture, Ecosystems and Environment, 230 329-340. https://doi.org/10.1016/j.agee.2016.06.009 DOI: https://doi.org/10.1016/j.agee.2016.06.009

Kahel-Raifer, H., & Glazer, I. (2000). Environmental factors affecting sexual differentiation in the entomopathogenic nematode Heterorhabditis bacteriophora. Journal of Experimental Zoology, 287(2): 158-166. https://doi.org/10.1002/1097-010X(20000701)287:2<158::AID-JEZ6>3.3.CO;2-W. DOI: https://doi.org/10.1002/1097-010X(20000701)287:2<158::AID-JEZ6>3.3.CO;2-W

Kaya, H. K., & Koppenhöfer, A. M. (1996). Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Science and Technology. https://doi.org/10.1080/09583159631334 DOI: https://doi.org/10.1080/09583159631334

Kaya, H. K., & Patricia Stock, S. (1997). Techniques in insect nematology. Manual of Techniques in Insect Pathology. https://doi.org/10.1016/b978-012432555-5/50016-6 DOI: https://doi.org/10.1016/B978-012432555-5/50016-6

Kim, J., Jaffuel, G., & Turlings, T. C. J. (2015). Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. BioControl, 60(4) 527-535. https://doi.org/10.1007/s10526-014-9638-z DOI: https://doi.org/10.1007/s10526-014-9638-z

Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Baumgartner, L. (2002). Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biological Control, 24(1): 90-97. https://doi.org/10.1016/S1049-9644(02)00008-7 DOI: https://doi.org/10.1016/S1049-9644(02)00008-7

Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Kaya, H. K. (2003). Effect of neonicotinoid synergists on entomopathogenic nematode fitness. Entomologia Experimentalis et Applicata, 106(1) 7-18. https://doi.org/10.1046/j.1570-7458.2003.00008.x DOI: https://doi.org/10.1046/j.1570-7458.2003.00008.x

Koppenhofer, A. M., Grewal, P. S., & Kaya, H. K. (2000). Synergism of imidacloprid and entomopathogenic nematodes against white grubs: the mechanism. Entomologia Experimentalis et Applicata, 94(3): 283-293. https://doi.org/10.1046/j.1570-7458.2000.00630.x DOI: https://doi.org/10.1046/j.1570-7458.2000.00630.x

Kung, S. P., Gaugler, R., & Kaya, H. K. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55(3) 401-406. https://doi.org/10.1016/0022-2011(90)90084-J DOI: https://doi.org/10.1016/0022-2011(90)90084-J

Kutz, S. J., Checkley, S., Verocai, G. G., Dumond, M., Hoberg, E. P., Peacock, R., Wu, J. P., Orsel, K., Seegers, K., Warren, A. L., & Abrams, A. (2013). Invasion, establishment, and range expansion of two parasitic nematodes in the canadian arctic. Global Change Biology, 19(11) 3254-3262. https://doi.org/10.1111/gcb.12315 DOI: https://doi.org/10.1111/gcb.12315

Lacey, L. A and Georgis, R. (2012). Entomopathogenic Nematodes for Control of Insect Pests Above and Below Ground with Comments on Commercial Production. Journal of Nematology, 44(2):218–225.

Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology. https://doi.org/10.1016/j.jip.2015.07.009 DOI: https://doi.org/10.1016/j.jip.2015.07.009

Lello, E. R., Patel, M. N., & Matthews, G. A. (1996). Application technology for entomopathogenic nematodes against foliar pests. Crop Prorection, 6: 567–574. DOI: https://doi.org/10.1016/0261-2194(96)00026-9

Liu, J., Poinar, G. O., & Berry, R. E. (2000). Control of Insect Pests with Entomopathogenic Nematodes: The Impact of Molecular Biology and Phylogenetic Reconstruction. Annual Review of Entomology. https://doi.org/10.1146/annurev.ento.45.1.287 DOI: https://doi.org/10.1146/annurev.ento.45.1.287

Lortkipanidze, M. A., Gorgadze, O. A., Kajaia, G. S., Gratiashvili, N. G., & Kuchava, M. A. (2016). Foraging behavior and virulence of some entomopathogenic nematodes. Annals of Agrarian Science, 14(2): 99-103. https://doi.org/10.1016/j.aasci.2016.05.009 DOI: https://doi.org/10.1016/j.aasci.2016.05.009

Lu, D., Sepulveda, C., & Dillman, A. R. (2017). Infective juveniles of the entomopathogenic nematode Steinernema scapterisci are preferentially activated by cricket tissue. PLoS ONE, 12(1), 1–14. https://doi.org/10.1371/journal.pone.0169410 DOI: https://doi.org/10.1371/journal.pone.0169410

McCoy, C. W., Shapiro, D. I., Duncan, L. W., & Nguyen, K. (2000). Entomopathogenic nematodes and other natural enemies as mortality factors for larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae). Biological Control, 19(2): 182-190. https://doi.org/10.1006/bcon.2000.0852 DOI: https://doi.org/10.1006/bcon.2000.0852

McMullen, J. G., Peterson, B. F., Forst, S., Blair, H. G., & Stock, S. P. (2017). Fitness costs of symbiont switching using entomopathogenic nematodes as a model. BMC Evolutionary Biology. https://doi.org/10.1186/s12862-017-0939-6 DOI: https://doi.org/10.1186/s12862-017-0939-6

Millar, L. C., & Barbercheck, M. E. (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biological Control, 25(1): 1-11. https://doi.org/10.1016/S1049-9644(02)00042-7 DOI: https://doi.org/10.1016/S1049-9644(02)00042-7

Negrisoli, A. S., Garcia, M. S., & Barbosa Negrisoli, C. R. C. (2010). Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection, 29(6): 545-549. https://doi.org/10.1016/j.cropro.2009.12.012 DOI: https://doi.org/10.1016/j.cropro.2009.12.012

Parkman, P., Bedding, R. A., Akhurst, R. J., & Kaya, H. K. (1994). Nematodes and the Biological Control of Insects. The Florida Entomologist, 77(3): 385-398. https://doi.org/10.2307/3496111 DOI: https://doi.org/10.2307/3496111

Patricia stock. S & goodrich-blairy, H. (2012). Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In L. A. Lacey (Ed.), Manual of Techniques in Invertebrate Pathology (Second Edi, pp. 373–400). San Diego, USA. 10.1016/B978-0-12-386899-2.00012-9. DOI: https://doi.org/10.1016/B978-0-12-386899-2.00012-9

Peña, J. M., Carrillo, M. A., & Hallem, E. A. (2015). Variation in the susceptibility of Drosophila to different entomopathogenic nematodes. Infection and Immunity, 83(3) 1130-1138. https://doi.org/10.1128/IAI.02740-14 DOI: https://doi.org/10.1128/IAI.02740-14

Perry, R. N. (1999). Desiccation survival of parasitic nematodes. Parasitology, 119(S1): S19-S30. https://doi.org/10.1017/s0031182000084626 DOI: https://doi.org/10.1017/S0031182000084626

Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology, 6(3) 389-402. https://doi.org/10.1080/09583159631361 DOI: https://doi.org/10.1080/09583159631361

Poinar, G. O. (2018). Taxonomy and biology of Steinernematidae and Heterorhabditidae. Entomopathogenic Nematodes in Biological Control. https://doi.org/10.1201/9781351071741 DOI: https://doi.org/10.1201/9781351071741

Půža, V., & Mráček, Z. (2010). Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)? Journal of Invertebrate Pathology, 104(1) 1-3. https://doi.org/10.1016/j.jip.2010.01.002 DOI: https://doi.org/10.1016/j.jip.2010.01.002

Ramirez, R. A., Henderson, D. R., Riga, E., Lacey, L. A., & Snyder, W. E. (2009). Harmful effects of mustard bio-fumigants on entomopathogenic nematodes. Biological Control, 48(2): 147-154. https://doi.org/10.1016/j.biocontrol.2008.10.010 DOI: https://doi.org/10.1016/j.biocontrol.2008.10.010

Rasmann, S., & Turlings, T. C. J. (2008). First insights into specificity of belowground tritrophic interactions. Oikos, 117(3): 362-369. https://doi.org/10.1111/j.2007.0030-1299.16204.x DOI: https://doi.org/10.1111/j.2007.0030-1299.16204.x

Shapiro-Ilan, D I., Hazir, S. Glazer, I. (2017). Basic and Applied Research: Entomopathogenic Nematodes. In L. A. Lacey (Ed.), Microbial Control of Insect and Mite Pests (pp. 90–108). San Diego, USA. DOI: https://doi.org/10.1016/B978-0-12-803527-6.00006-8

Shapiro-Ilan, D. I., & Gaugler, R. (2002). Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology, 28(3): 137-146. https://doi.org/10.1038/sj.jim.7000230 DOI: https://doi.org/10.1038/sj.jim.7000230

Shapiro-Ilan, D. I., Gouge, D. H., Piggott, S. J., & Fife, J. P. (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38(1): 124-133. https://doi.org/10.1016/j.biocontrol.2005.09.005 DOI: https://doi.org/10.1016/j.biocontrol.2005.09.005

Shapiro-Ilan, D. I., Han, R., & Dolinksi, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44(2): 206-217.

Shapiro-Ilan, D. I., Han, R., & Qiu, X. (2013). Production of Entomopathogenic Nematodes. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens (pp. 321–355). https://doi.org/10.1016/B978-0-12-391453-8.00010-8 DOI: https://doi.org/10.1016/B978-0-12-391453-8.00010-8

Sicard, M., Ferdy, J. B., Pagès, S., Le Brun, N., Godelle, B., Boemare, N., & Moulia, C. (2004). When mutualists are pathogens: An experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Journal of Evolutionary Biology, 17(5): 985-993. https://doi.org/10.1111/j.1420-9101.2004.00748.x DOI: https://doi.org/10.1111/j.1420-9101.2004.00748.x

Sicard, Mathieu, Ramone, H., Le Brun, N., Pagès, S., & Moulia, C. (2005). Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften, 92(10) 472-476. https://doi.org/10.1007/s00114-005-0021-x DOI: https://doi.org/10.1007/s00114-005-0021-x

Simões, N., & Rosa, J. S. (1996). Pathogenicity and host specificity of entomopathogenic nematodes. Biocontrol Science and Technology, 6(3) 403-412. https://doi.org/10.1080/09583159631370 DOI: https://doi.org/10.1080/09583159631370

Smits, P. H. (1996). Post-application persistence of entomopathogenic nematodes. Biocontrol Science and Technology, 6(3): 379-388. https://doi.org/10.1080/09583159631352 DOI: https://doi.org/10.1080/09583159631352

Silva, R. A. D., Quintela, E. D., Mascarin, G. M., Barrigossi, J. A. F., & Lião, L. M. (2013). Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Scientia Agricola, 70(3) 152-160. https://doi.org/10.1590/S0103-90162013000300003 DOI: https://doi.org/10.1590/S0103-90162013000300003

Society, T. (2012). Entomopathogenic Nematode Production and Application Technology. 44(2), 206–217.

Soetaert, K., Franco, M., Lampadariou, N., Muthumbi, A., Steyaert, M., Vandepitte, L., Berghe, E. Vanden, & Vanaverbeke, J. (2009). Factors affecting nematode biomass, length and width from the shelf to the deep sea. Marine Ecology Progress Series, 392: 123-132. https://doi.org/10.3354/meps08202 DOI: https://doi.org/10.3354/meps08202

Somasekhar, N., Grewal, P. S., De Nardo, E. A. B., & Stinner, B. R. (2002). Non-target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology, 39(5): 735-744. https://doi.org/10.1046/j.1365-2664.2002.00749.x DOI: https://doi.org/10.1046/j.1365-2664.2002.00749.x

Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., Dyer, K., & Maron, J. L. (1996). Entomopathogenic nematodes: Natural enemies of root-feeding caterpillars on bush lupine. Oecologia, 108(1) 167-173. https://doi.org/10.1007/BF00333228 DOI: https://doi.org/10.1007/BF00333228

Strong, D. R., Whipple, A. V., Child, A. L., & Dennis, B. (1999). Model selection for a subterranean trophic cascade: Root-feeding caterpillars and entomopathogenic nematodes. Ecology, 80(8): 2750-2761. https://doi.org/10.1890/0012-9658(1999)080[2750:MSFAST]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1999)080[2750:MSFAST]2.0.CO;2

Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J., & Hoy, C. W. (2006). Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38(1): 80-102. https://doi.org/10.1016/j.biocontrol.2005.09.019 DOI: https://doi.org/10.1016/j.biocontrol.2005.09.019

Sumit Vashisth, Y. S. C. and R. S. C. (2018). Studies on host invasion and mass production of Himalayan species of entomopathogenic nematodes. Nematology, 45: 1–6.

Triggiani, O., & Cravedi, P. (2011). Entomopathogenic nematodes. Redia, 94: 119-122. https://doi.org/10.1385/0-89603-515-8:271 DOI: https://doi.org/10.1385/0-89603-515-8:271

Van Niekerk, S., & Malan, A. P. (2014). Compatibility of Biological Control Agents and Agrochemicals to Entomopathogenic Nematodes, Steinernema yirgalemense and Heterorhabditis zealandica. African Entomology, 22(1) 49-56. https://doi.org/10.4001/003.022.0132 DOI: https://doi.org/10.4001/003.022.0132

Vashisth, S., Chandel, Y. S., Sharma, K., & Entomopathogenic, K. (2013). Entomopathogenic nematodes - a review. Agricultural research communication centre, 34(3), 163–175. Doi:10.5958/j.0976-0741.34.3.001 DOI: https://doi.org/10.5958/j.0976-0741.34.3.001

Weischer, B. (2000). Bioassays of Entomopathogenic Microbes and Nematodes. Journal of Phytopathology, 148(11-12): 637-642. https://doi.org/10.1046/j.1439-0434.2000.00579.x DOI: https://doi.org/10.1046/j.1439-0434.2000.00579.x

Downloads

Published

— Updated on 2023-12-25

How to Cite

Danishiar, S. Q., Falahzadah, M. H., & Tarasco, E. (2023). A Study of entomopathogenic nematodes and their role in microbial control of pests. Journal of Natural Science Review, 1(1), 52–63. https://doi.org/10.62810/jnsr.v1i1.10

Issue

Section

Articles