Optimization and Characterization of Niosomal Transdermal Patch of Lornoxicam
DOI:
https://doi.org/10.62810/jnsr.v2i4.105Keywords:
Inflammation, Lornoxicam, Niosomal Patches, Permeation, Transdermal Drug DeliveryAbstract
Lornoxicam has a low solubility; therefore, its oral use is restricted due to its adverse effects on the gastric system. Hence, we intend to design a niosomal transdermal patch of Lornoxicam to improve clinical efficacy and enhance its absorption and penetration through the skin by applying surfactants. Surfactants generally improve the solubility and penetration of the active ingredients. The niosome vesicles are prepared by using the rotary film evaporation technique. The result showed that the percentage entrapment efficacy of unsonicated niosome vesicles was 70.13 ±0.2% and sonicated 72.39 ±0.02% of the optimized formulation. The sonicator apparatus reduced the size of vesicles; hence, the entrapment efficacy of sonicated formulations is greater than that of unsonicated formulations. The in vitro release of optimized niosomal patches formulations (TPF1- TPF2-TPF3) was performed for 6 hours across the egg membrane, where results showed that the maximum release of TPF1 formulation due to less thickness (121 ±1.53 μm) was 90.86%.
Downloads
References
Akhtar, N., Arkvanshi, S., Bhattacharya, S. S., Verma, A., & Pathak, K. (2015). Preparation and evaluation of a buflomedil hydrochloride niosomal patch for transdermal delivery. Journal of liposome research, 25(3), 191-201. DOI: https://doi.org/10.3109/08982104.2014.974058
Al-Achi, A., Gupta, M. R., & Stagner, W. C. (2022). Integrated pharmaceutics: applied preformulation, product design, and regulatory science. John Wiley & Sons. DOI: https://doi.org/10.1002/9781394156122
Baker, A. K., Hoffmann, V. L., & Meert, T. F. (2002). Dextromethorphan and ketamine potentiate the antinociceptive effects of μ-but not δ-or κ-opioid agonists in a mouse model of acute pain. Pharmacology Biochemistry and Behavior, 74(1), 73-86. DOI: https://doi.org/10.1016/S0091-3057(02)00961-9
Berthomieu, C., & Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research, 101, 157-170. DOI: https://doi.org/10.1007/s11120-009-9439-x
Chellappan, D. K., Yee, L. W., Xuan, K. Y., Kunalan, K., Rou, L. C., Jean, L. S., ... & Dua, K. (2020). Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug development research, 81(4), 419-436. DOI: https://doi.org/10.1002/ddr.21648
Chen, Y., Chen, B. Z., Wang, Q. L., Jin, X., & Guo, X. D. (2017). Fabrication of coated polymer microneedles for transdermal drug delivery. Journal of Controlled Release, 265, 14-21. DOI: https://doi.org/10.1016/j.jconrel.2017.03.383
Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Characterization of nanoparticles intended for drug delivery, 63-70. DOI: https://doi.org/10.1007/978-1-60327-198-1_6
Date, A. A., Naik, B., & Nagarsenker, M. S. (2005). Novel drug delivery systems: potential in improving topical delivery of antiacne agents. Skin pharmacology and physiology, 19(1), 2-16. DOI: https://doi.org/10.1159/000089138
Davidson, M. W., & Abramowitz, M. (2002). Optical microscopy. Encyclopedia of imaging science and technology, 2(1106-1141), 120. DOI: https://doi.org/10.1002/0471443395.img074
Farmoudeh, A., Akbari, J., Saeedi, M., Ghasemi, M., Asemi, N., & Nokhodchi, A. (2020). Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug delivery and translational research, 10, 1428-1441. DOI: https://doi.org/10.1007/s13346-020-00715-6
Hamishehkar, H., Rahimpour, Y., & Kouhsoltani, M. (2013). Niosomes as a propitious carrier for topical drug delivery. Expert opinion on drug delivery, 10(2), 261-272. DOI: https://doi.org/10.1517/17425247.2013.746310
Hellmy, M., & Azida, N. (2023). Selective visualization techniques for elemental mapping analysis of granite stones by field emission scanning electron microscopy and energy dispersive spectroscopy (FESEM-EDXS). Materials Today: Proceedings, 75, 173-180. DOI: https://doi.org/10.1016/j.matpr.2022.11.315
Hoseini, B., Jaafari, M. R., Golabpour, A., Momtazi-Borojeni, A. A., & Eslami, S. (2023). Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. International Journal of Pharmaceutics, 646, 123414. DOI: https://doi.org/10.1016/j.ijpharm.2023.123414
Korting, H. C., & Schafer-Korting, M. (2010). Carriers in the topical treatment of skin disease. Drug delivery, 435-468. DOI: https://doi.org/10.1007/978-3-642-00477-3_15
Kushla, G. P., Zatz, J. L., Mills, O. H., & Berger, R. S. (1993). Noninvasive assessment of anesthetic activity of topical lidocaine formulations. Journal of pharmaceutical sciences, 82(11), 1118-1122. DOI: https://doi.org/10.1002/jps.2600821110
Madane, V. B., Aloorkar, N. H., & Mokale, V. J. (2021). Niosomes as an ideal drug delivery system. J Nanosci Nanotechnol, 3, 1-9. DOI: https://doi.org/10.47363/JNSRR/2021(3)123
Mishra, D., Ghosh, G., Kumar, P. S., & Panda, P. K. (2011). An experimental study of analgesic activity of selective COX-2 inhibitor with conventional NSAIDs. Asian Journal of Pharmaceutical and clinical research, 4(1), 78-81.
Moore, N., Bosco-Levy, P., Thurin, N., Blin, P., & Droz-Perroteau, C. (2021). NSAIDs and COVID-19: a systematic review and meta-analysis. Drug safety, 44(9), 929-938. DOI: https://doi.org/10.1007/s40264-021-01089-5
Mundada, M., Wankhede, S., Patwardhan, S., & Avachat, A. (2012). Formulation and evaluation of topical gel of lornoxicam using a range of penetration enhancers. Indian J Pharm Edu Res, 47, 168-71.
Palei, N. N., Mohanta, B. C., Das, M. K., & Sabapathi, M. L. (2017). Lornoxicam loaded nanostructured lipid carriers for topical delivery: Optimization, skin uptake and in vivo studies. Journal of Drug Delivery Science and Technology, 39, 490-500. DOI: https://doi.org/10.1016/j.jddst.2017.05.001
Pandey, S. S., Shah, K. M., Maulvi, F. A., Desai, D. T., Gupta, A. R., Joshi, S. V., & Shah, D. O. (2021). Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies. Journal of Drug Delivery Science and Technology, 63, 102441. DOI: https://doi.org/10.1016/j.jddst.2021.102441
Pelalak, R., Rahzani, B., Khoshmaram, A., Hosseini, S., Jamshidian, S., Sharafi, A., ... & Shirazian, S. (2021). Predictive thermodynamic modeling and experimental measurements on solubility of active pharmaceutical ingredient: Lornoxicam case study. Journal of Molecular Liquids, 326, 115285. DOI: https://doi.org/10.1016/j.molliq.2021.115285
Sahu, A. N., & Mohapatra, D. (2021). Nanovesicular transferosomes for the topical delivery of plant bioactives. Nanomedicine, 16(28), 2491-2495. DOI: https://doi.org/10.2217/nnm-2021-0316
Sammour, R. M., Taher, M., Chatterjee, B., Shahiwala, A., & Mahmood, S. (2019). Optimization of aceclofenac proniosomes by using different carriers, part 1: Development and characterization. Pharmaceutics, 11(7), 350. DOI: https://doi.org/10.3390/pharmaceutics11070350
Schick, C. (2009). Differential scanning calorimetry (DSC) of semicrystalline polymers. Analytical and bioanalytical chemistry, 395, 1589-1611. DOI: https://doi.org/10.1007/s00216-009-3169-y
Singh, D., Sachan, A. K., & Kumar, S. (2018). Formulation and evaluation of topical gel delivery of lornoxicam. World J Pharm Pharm Sci, 7(6), 884-896.
Sinha, V. R., & Kaur, M. P. (2000). Permeation enhancers for transdermal drug delivery. Drug development and industrial pharmacy, 26(11), 1131-1140. DOI: https://doi.org/10.1081/DDC-100100984
Tangri, P., & Khurana, S. (2011). Niosomes: Formulation and evaluation. International Journal, 2229, 7499.
Tankiewicz, M. (2023). Assessment of apple peel barrier effect to pesticide permeation using Franz diffusion cell and QuEChERS method coupled with GC-MS/MS. Foods, 12(17), 3220. DOI: https://doi.org/10.3390/foods12173220
Vyas, S. P., Singh, R. P., Jain, S., Mishra, V., Mahor, S., Singh, P., ... & Dubey, P. (2005). Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. International journal of pharmaceutics, 296(1-2), 80-86. DOI: https://doi.org/10.1016/j.ijpharm.2005.02.016
Waghule, T., Singhvi, G., Dubey, S. K., Pandey, M. M., Gupta, G., Singh, M., & Dua, K. (2019). Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine & pharmacotherapy, 109, 1249-1258. DOI: https://doi.org/10.1016/j.biopha.2018.10.078
Williams, D. B., Carter, C. B., Williams, D. B., & Carter, C. B. (1996). The transmission electron microscope (pp. 3-17). Springer Us. DOI: https://doi.org/10.1007/978-1-4757-2519-3_1
Yadav, K., Yadav, D., Saroha, K., Nanda, S., Mathur, P., & Syan, N. (2010). Proniosomal Gel: A provesicular approach for transdermal drug delivery. Der Pharmacia Lettre, 2(4), 189-198.
Yang, X., Tang, Y., Wang, M., Wang, Y., Wang, W., Pang, M., & Xu, Y. (2021). Co-delivery of methotrexate and nicotinamide by cerosomes for topical psoriasis treatment with enhanced efficacy. International Journal of Pharmaceutics, 605, 120826. DOI: https://doi.org/10.1016/j.ijpharm.2021.120826
Yener, G., Üner, M., Gönüllü, Ü., Yildirim, S., Kiliç, P., Aslan, S. S., & Barla, A. (2010). Design of meloxicam and lornoxicam transdermal patches: Preparation, physical characterization, ex vivo and in vivo studies. Chemical and Pharmaceutical Bulletin, 58(11), 1466-1473. DOI: https://doi.org/10.1248/cpb.58.1466
Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., & Xie, S. (2010). DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. The AAPS journal, 12, 263-271. DOI: https://doi.org/10.1208/s12248-010-9185-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Azimullah Wafa, Sudhakar CK, Nagina Belali, Roshaan Raihan, Swati Tyagi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.