Optimization of One-Dimensional Functions Using the Golden Section Search Method
DOI:
https://doi.org/10.62810/jnsr.v3i3.234Keywords:
Algorithm, Golden Section Search, One-Dimensional Optimization, Optimization, Unimodal FunctionAbstract
This paper addresses the problem of one-dimensional function optimization using the Golden Section Search Method. The primary objective is to determine the point at which a given unimodal function achieves its minimum within a bounded interval. The importance of such methods lies in their applicability to various scientific and engineering problems where analytical solutions may be complex or intractable. The study aims to explore both the theoretical background and practical implementation of the method, supported by an illustrative example. The research method involves analytical derivation of conditions for extrema, an explanation of unimodality, and step-by-step application of the Golden Section technique. The expected result is an accurate approximation of the function's minimum point with a specified level of precision, demonstrating the effectiveness and efficiency of the method in minimizing unimodal functions without requiring derivative information.
Downloads
References
Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved Opposition-Based Sine Cosine Algorithm for global optimization. Expert Systems with Applications, 90, 484–500. https://doi.org/10.1016/j.eswa.2017.07.043
Abubakar, A. B., Malik, M., Kumam, P., Mohammad, H., Sun, M., Ibrahim, A. H., & Kiri, A. I. (2022). A Liu-Storey-type conjugate gradient method for an unconstrained minimization problem with application in motion control. Journal of King Saud University - Science, 34(4), 101923. https://doi.org/10.1016/j.jksus.2022.101923
Adby, P. R., & Dempster, M. A. H. (1982). Introduction to optimization methods (Repr). Chapman and Hall.
Balerna, M., Fosset, M., Chicheportiche, R., Romey, G., & Lazdunski, M. (1975). Constitution and properties of axonal membranes of crustacean nerves. Biochemistry, 14(25), 5500–5511. https://doi.org/10.1021/bi00696a019
Bertsekas, D. P. (2016). Nonlinear programming (3rd ed). Athena scientific.
Boyd, S. P., & Vandenberghe, L. (2023). Convex optimization (Version 29). Cambridge University Press.
Chakraborty, S. K., & Panda, G. (2016). Golden section search over hyper-rectangle: A direct search method. International Journal of Mathematics in Operational Research, 8(3), 279. https://doi.org/10.1504/IJMOR.2016.075517
Chen, M., Zhou, Y., & Luo, Q. (2022). An Improved Arithmetic Optimization Algorithm for Numerical Optimization Problems. Mathematics, 10(12), 2152. https://doi.org/10.3390/math10122152
Du, W., Li, M., Pei, Z., & Ma, C. (2022). Performances of three models in predicting packing densities and optimal mixing fractions of mixtures of micropowders with different sizes. Powder Technology, 397, 117095. https://doi.org/10.1016/j.powtec.2021.117095
Hashemi, A., Si Na, K., Noori, A. Q., & Orfan, S. N. (2022). Gender differences on the acceptance and barriers of ICT use in English language learning: Students’ perspectives. Cogent Arts & Humanities, 9(1), 2085381. https://doi.org/10.1080/23311983.2022.2085381
Liu, G.-W., Cao, H.-W., Li, W.-L., Lian, S.-Y., Yan, X.-L., & Wang, J.-Y. (2025). Method based on golden section search for reconstruction of nano layer structure directly from depth profiling data. Journal of Vacuum Science & Technology B, 43(2), 022804. https://doi.org/10.1116/6.0004306
Luo, Y., Meng, J., Wang, D., & Xue, G. (2021). New One‐Dimensional Search Iteration Algorithm and Engineering Application. Shock and Vibration, 2021(1), 7643555. https://doi.org/10.1155/2021/7643555
Malekian, H., Salehi, M., & Biria, D. (2019). Investigation of platinum recovery from a spent refinery catalyst with a hybrid of oxalic acid produced by Aspergillus niger and mineral acids. Waste Management, 85, 264–271. https://doi.org/10.1016/j.wasman.2018.12.045
Milutinović, V., & Kotlar, M. (Eds.). (2019). Exploring the dataflow supercomputing paradigm: Example Algorithms for Selected Applications. Springer.
Montiel-Arrieta, L. J., Barragan-Vite, I., Seck-Tuoh-Mora, J. C., Hernandez-Romero, N., González-Hernández, M., & Medina-Marin, J. (2023). Minimizing the total waste in the one-dimensional cutting stock problem with the African buffalo optimization algorithm. PeerJ Computer Science, 9, e1728. https://doi.org/10.7717/peerj-cs.1728
Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed). Springer.
Noroozi, M., Mohammadi, H., Efatinasab, E., Lashgari, A., Eslami, M., & Khan, B. (2022). Golden Search Optimization Algorithm. IEEE Access, 10, 37515–37532. https://doi.org/10.1109/ACCESS.2022.3162853
Pejic, D., & Arsic, M. (2019). Minimization and Maximization of Functions: Golden-Section Search in One Dimension. In V. Milutinovic & M. Kotlar (Eds.), Exploring the DataFlow Supercomputing Paradigm (pp. 55–90). Springer International Publishing. https://doi.org/10.1007/978-3-030-13803-5_3
Raj, B., Ahmedy, I., Idris, M. Y. I., & Noor, R. Md. (2022). A Hybrid Sperm Swarm Optimization and Genetic Algorithm for Unimodal and Multimodal Optimization Problems. IEEE Access, 10, 109580–109596. https://doi.org/10.1109/ACCESS.2022.3208169
Sharma, T. K., Pant, M., & Singh, V. P. (2012). Improved Local Search in Artificial Bee Colony using Golden Section Search (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1210.6128
Tian, J., Qu, F., Sun, D., & Wang, Q. (2024). Novel Pressure-Based Optimization Method Using Deep Learning Techniques. AIAA Journal, 62(2), 708–724. https://doi.org/10.2514/1.J063222
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 hamidullah Noori, Rahman Besharat, Mohammad Zarif Mehrzad

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.