Thiosemicarbazone Ligands and TheirTransition Metal Complexes as Antioxidants: A Review

Authors

  • Qumars Poladian Department of Inorganic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v3i3.252

Keywords:

Antioxidant Activity, ABTS method, Capacity, CUPRAC method, DPPH method, Metal complexes, Thiosemicarbazone ligands

Abstract

Antioxidant molecules prevent the harmful reaction of oxidants inside the body by providing a single electron or hydrogen atom based on their mechanism. Different forms of oxidants such as reactive oxygen species (ROS) or reactive nitrogen species (RNS) could harm the proteins, lipids, and DNA. Due to the chain reactions of oxidants in the medium that exist, unwanted consequences could happen inside the body. The antioxidants by reacting with oxidants prevent the damages caused by the chain reaction of oxidants. Natural antioxidants are a well-known group of matters such as vitamins, fruits, vegetables, and nuts. The antioxidant capacity/activity of natural antioxidants is studied comprehensively and reported in the literature. Synthetic antioxidants such as thiosemicarbazones either in the form of ligand or their metal complexes, could exhibit potent antioxidant capacity/activity comparable or sometimes more potent compared to the natural antioxidant. The existence of different electron donor groups in the structure of thiosemicarbazones such as hydroxyl and amine groups, could appear in the form of antioxidant capacity or activity. In the literature, various methods of determining the antioxidant capacity/activity of compounds such as thiosemicarbazones are reported. Among them, the three methods such as CUPRAC (CUPric Reducing Antioxidant Capacity), DPPH (2,2-di(4-tert-octyl phenyl)-1-picrylhydrazyl) and ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-6-acid) are well-known methods for the evaluating of antioxidant capacity/activity of thiosemicarbazones. In this review, the antioxidant capacity/activity of thiosemicarbazones by the last three methods is studied and the relationship between the structure of thiosemicarbazone ligands and their corresponding metal complexes with their antioxidant capacity/activity is analyzed.

Downloads

Download data is not yet available.

References

Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3). https://doi.org/10.1111/jfbc.13145 DOI: https://doi.org/10.1111/jfbc.13145

Ain, Q. U., Singh, A., Singh, I., Carmieli, R., & Sharma, R. (2023). Synthesis, characterization and anti-tubercular activities of copper(II) complexes of substituted 2,3-isatin bisthiosemicarbazones: An experimental and theoretical approach. Results in Chemistry, 6, 101171. https://doi.org/10.1016/j.rechem.2023.101171 DOI: https://doi.org/10.1016/j.rechem.2023.101171

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for dietary polyphenols and vitamins C and E, using their Cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x DOI: https://doi.org/10.1021/jf048741x

Altiparmak, E. A., Yazar, S., Özdemir, N., Bal-Demirci, T., & Ülküseven, B. (2021). Supramolecular Ni(II) complex aggregates with a circular linkage of intermolecular multi-hydrogen bonding frameworks based on thiosemicarbazone, and a Cu(II) complex: Synthesis, structural, DFT, electrochemical and antioxidant studies. Polyhedron, 209, 115457. https://doi.org/10.1016/j.poly.2021.115457 DOI: https://doi.org/10.1016/j.poly.2021.115457

Aneesrahman, K., Ramaiah, K., Rohini, G., Stefy, G., Bhuvanesh, N., & Sreekanth, A. (2019). Synthesis and characterisations of copper(II) complexes of 5-methoxyisatin thiosemicarbazones: Effect of N-terminal substitution on DNA/protein binding and biological activities. Inorganica Chimica Acta, 492, 131–141. https://doi.org/10.1016/j.ica.2019.04.019 DOI: https://doi.org/10.1016/j.ica.2019.04.019

Bal-Demirci, T., Güveli, Ş., Yeşilyurt, S., Özdemir, N., & Ülküseven, B. (2019). Thiosemicarbazone ligand, nickel(II) and ruthenium(II) complexes based on vitamin B6 vitamer: The synthesis, different coordination behaviors and antioxidant activities. Inorganica Chimica Acta, 502, 119335. https://doi.org/10.1016/j.ica.2019.119335 DOI: https://doi.org/10.1016/j.ica.2019.119335

Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28(1), 25–30. https://doi.org/10.1016/s0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Basyouni, W. M., Abbas, S. Y., El-Bayouki, K. a. M., Daawod, R. M., & Elawady, M. K. (2021). Synthesis and antiviral evaluation of 5-(arylazo)salicylaldehyde thiosemicarbazone derivatives as potent anti-bovine viral diarrhea virus agents. Synthetic Communications, 51(El-Helw et al., 2019), 2168–2174. https://doi.org/10.1080/00397911.2021.1925298 DOI: https://doi.org/10.1080/00397911.2021.1925298

Cárdenas, A., Gomez, M., & Frontana, C. (2014). Electrochemical method to quantify antioxidants employing Cupric reducing antioxidant capacity, CUPRAC. Procedia Chemistry, 12, 62–65. https://doi.org/10.1016/j.proche.2014.12.042 DOI: https://doi.org/10.1016/j.proche.2014.12.042

Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015 DOI: https://doi.org/10.1016/j.clinbiochem.2003.11.015

Eğlence-Bakır, S., Şahin, M., Özyürek, M., & Ülküseven, B. (2021). Dioxomolybdenum(VI) complexes with 4-benzyloxysalicylidene-N/S-alkyl thiosemicarbazones: Synthesis, structural analysis, antioxidant activity and xanthine oxidase inhibition. Polyhedron, 209, 115467. https://doi.org/10.1016/j.poly.2021.115467 DOI: https://doi.org/10.1016/j.poly.2021.115467

Eğlence-Bakır, S., Sacan, O., Şahin, M., Yanardag, R., & Ülküseven, B. (2019). Dioxomolybdenum(VI) complexes with 3-methoxy salicylidene-N-alkyl substituted thiosemicarbazones. Synthesis, characterization, enzyme inhibition and antioxidant activity. Journal of Molecular Structure, 1194, 35–41. https://doi.org/10.1016/j.molstruc.2019.05.077 DOI: https://doi.org/10.1016/j.molstruc.2019.05.077

El-Helw, E. a. E., Sallam, H. A., & Elgubbi, A. S. (2019). Antioxidant activity of some N-heterocycles derived from 2-(1-(2-oxo-2H-chromen-3-yl)ethylidene) hydrazinecarbothioamide. Synthetic Communications, 49(20), 2651–2661. https://doi.org/10.1080/00397911.2019.1638938 DOI: https://doi.org/10.1080/00397911.2019.1638938

Floch, C., Alarcon-Gutiérrez, E., & Criquet, S. (2007). ABTS assay of phenol oxidase activity in soil. Journal of Microbiological Methods, 71(3), 319–324. https://doi.org/10.1016/j.mimet.2007.09.020 DOI: https://doi.org/10.1016/j.mimet.2007.09.020

Fuior, A., Cebotari, D., Garbuz, O., Calancea, S., Gulea, A., & Floquet, S. (2022). Biological properties of a new class of [Mo2O2S2]-based thiosemicarbazone coordination complexes. Inorganica Chimica Acta, 548, 121372. https://doi.org/10.1016/j.ica.2022.121372 DOI: https://doi.org/10.1016/j.ica.2022.121372

Findik, M., Türkkan, E., Pehlivanoglu, S., Sayin, U., Ceylan, U., & Akgemci, E. G. (2023). New copper(II) complex based-thiosemicarbazone and phenanthroline: DNA/BSA binding, antiproliferative activity, DFT and docking studies. Inorganic Chemistry Communications, 156, 111300. https://doi.org/10.1016/j.inoche.2023.111300 DOI: https://doi.org/10.1016/j.inoche.2023.111300

Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3 DOI: https://doi.org/10.1007/s00204-020-02689-3

Graur, I., Bespalova, T., Graur, V., Tsapkov, V., Garbuz, O., Melnic, E., Bourosh, P., & Gulea, A. (2023). A new thiosemicarbazone and its 3d metal complexes: Synthetic, structural, and antioxidant studies. Journal of Chemical Research, 47(6). https://doi.org/10.1177/17475198231216422

Ghafoor, A., Hassan, H. R., Ismail, M., Malik, W. M. A., Afaq, S., Nawaz, H., Manzoor, S., Nisa, M. U., Verpoort, F., & Chughtai, A. H. (2024). Synthesis, characterization and molecular docking studies of bioactive 1,3-Thiazoles as promising antibacterial and antioxidant agents. Results in Chemistry, 7, 101328. https://doi.org/10.1016/j.rechem.2024.101328 DOI: https://doi.org/10.1016/j.rechem.2024.101328

Graur, I., Bespalova, T., Graur, V., Tsapkov, V., Garbuz, O., Melnic, E., Bourosh, P., & Gulea, A. (2023). A new thiosemicarbazone and its 3d metal complexes: Synthetic, structural, and antioxidant studies. Journal of Chemical Research, 47(6). https://doi.org/10.1177/17475198231216422 DOI: https://doi.org/10.1177/17475198231216422

Graur, I., Graur, V., Cadin, M., Garbuz, O., Bourosh, P., Melnic, E., Lozan-Tirsu, C., Balan, G., Tsapkov, V., Fala, V., & Gulea, A. (2024). Synthesis and Characterization of Copper(II) and Nickel(II) Complexes with 3-(Morpholin-4-yl)propane-2,3-dione 4-Allylthiosemicarbazone Exploring the Antibacterial, Antifungal and Antiradical Properties. Molecules, 29(16), 3903. https://doi.org/10.3390/molecules29163903 DOI: https://doi.org/10.3390/molecules29163903

Graur, V., Mardari, A., Bourosh, P., Kravtsov, V., Usataia, I., Ulchina, I., Garbuz, O., & Gulea, A. (2023). Novel Antioxidants Based on Selected 3d Metal Coordination Compounds with 2-Hydroxybenzaldehyde 4,S-Diallylisothiosemicarbazone. Acta Chimica Slovenica, 70(1), 122–130. https://doi.org/10.17344/acsi.2022.7885 DOI: https://doi.org/10.17344/acsi.2022.7885

Hernández, W., Carrasco, F., Vaisberg, A., Spodine, E., Icker, M., Krautscheid, H., Beyer, L., Tamariz-Angeles, C., & Olivera-Gonzales, P. (2023). Novel Thiosemicarbazone Derivatives from Furan-2-Carbaldehyde: Synthesis, Characterization, Crystal Structures, and Antibacterial, Antifungal, Antioxidant, and Antitumor Activities. Journal of Chemistry, 2023, 1–20. https://doi.org/10.1155/2023/5413236 DOI: https://doi.org/10.1155/2023/5413236

İlhan-Ceylan, B. (2020). Oxovanadium(IV) and Nickel(II) complexes obtained from 2,2′-dihydroxybenzophenone-S-methyl-thiosemicarbazone: Synthesis, characterization, electrochemistry, and antioxidant capability. Inorganica Chimica Acta, 517, 120186. https://doi.org/10.1016/j.ica.2020.120186 DOI: https://doi.org/10.1016/j.ica.2020.120186

Khalaji, A. D., Shahsavani, E., Feizi, N., Kucerakova, M., Dusek, M., & Mazandarani, R. (2016). Silver(I) thiosemicarbazone complex [Ag(catsc)(PPh3)2]NO3: Synthesis, characterization, crystal structure, and antibacterial study. Comptes Rendus Chimie, 20(5), 534–539. https://doi.org/10.1016/j.crci.2016.09.001 DOI: https://doi.org/10.1016/j.crci.2016.09.001

Kaya, B., Kaya, K., Koca, A., & Ülküseven, B. (2019). Thiosemicarbazide-based iron(III) and manganese(III) complexes. Structural, electrochemical characterization and antioxidant activity. Polyhedron, 173, 114130. https://doi.org/10.1016/j.poly.2019.114130 DOI: https://doi.org/10.1016/j.poly.2019.114130

Kaya, B., Çevik, U. A., Karakaya, A., & Ercetin, T. (2024). Synthesis, anticholinesterase and antioxidant activity of thiosemicarbazone derivatives. Cumhuriyet Science Journal, 45(3), 519–523. https://doi.org/10.17776/csj.1438171 DOI: https://doi.org/10.17776/csj.1438171

Karakurt, T., Kaya, B., Şahin, O., & Ülküseven, B. (2022). Synthesis of the nickel(II) complexes bearing tetradentate thiosemicarbazone through Michael addition of n-alcohols. Experimental, theoretical characterization and antioxidant properties. Structural Chemistry, 33(4), 1007–1017. https://doi.org/10.1007/s11224-022-01908-0 DOI: https://doi.org/10.1007/s11224-022-01908-0

Kaya, B. (2022). An Iron(III)-S-methylthiosemicarbazone complex: synthesis, spectral characterization, and antioxidant potency measured by CUPRAC and DPPH methods. Journal of the Turkish Chemical Society Section a Chemistry, 9(3), 867–878. https://doi.org/10.18596/jotcsa.1058398 DOI: https://doi.org/10.18596/jotcsa.1058398

Kathiresan, S., Kesavan, M. P., Annaraj, J., & Ravi, L. (2023). DNA and albumin interaction studies of imidazole-based thiosemicarbazone-metal(II) chelates using spectroscopic and molecular docking methods: DNA cleavage, antioxidant and anti-inflammatory properties. Inorganic Chemistry Communications, 158, 111527. https://doi.org/10.1016/j.inoche.2023.111527 DOI: https://doi.org/10.1016/j.inoche.2023.111527

Masuri, S., Era, B., Pintus, F., Cadoni, E., Cabiddu, M. G., Fais, A., & Pivetta, T. (2023). Hydroxylated Coumarin-Based thiosemicarbazones as dual antityrosinase and antioxidant agents. International Journal of Molecular Sciences, 24(2), 1678. https://doi.org/10.3390/ijms24021678 DOI: https://doi.org/10.3390/ijms24021678

Munikumari, G., Konakanchi, R., Nishtala, V. B., Ramesh, G., Kotha, L. R., Chandrasekhar, K. B., & Ramachandraiah, C. (2019). Palladium(II) complexes of 5-substituted isatin thiosemicarbazones: Synthesis, spectroscopic characterization, biological evaluation and in silico docking studies. Synthetic Communications, 49(1), 146–158. https://doi.org/10.1080/00397911.2018.1546400 DOI: https://doi.org/10.1080/00397911.2018.1546400

Mareček, V., Mikyška, A., Hampel, D., Čejka, P., Neuwirthová, J., Malachová, A., & Cerkal, R. (2016). ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. Journal of Cereal Science, 73, 40–45. https://doi.org/10.1016/j.jcs.2016.11.004 DOI: https://doi.org/10.1016/j.jcs.2016.11.004

Milardović, S., Iveković, D., & Grabarić, B. S. (2005). A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 68(2), 175–180. https://doi.org/10.1016/j.bioelechem.2005.06.005 DOI: https://doi.org/10.1016/j.bioelechem.2005.06.005

Martysiak-Żurowska, D., Wenta W. (2012). A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol., Technol. Aliment. 1(11), 83-89.

Nibila, T., Soufeena, P., Periyat, P., & Aravindakshan, K. (2021). Synthesis, structural characterization and biological activities of transition metal complexes derived from 2,4-dihydroxybenzaldehyde n(4)-methyl(phenyl)thiosemicarbazone. Journal of Molecular Structure, 1231, 129938. https://doi.org/10.1016/j.molstruc.2021.129938 DOI: https://doi.org/10.1016/j.molstruc.2021.129938

Ortaboy, S., Karakurt, T., Kaya, B., Şahin, O., & Ülküseven, B. (2024). Manganese(III) complexes with a tetradentate thiosemicarbazone. Structural characterization, electrochemistry, antioxidant capability, molecular docking and dynamics simulation on the potential inhibitory activity of cyclin-dependent kinase 2. Polyhedron, 261, 117128. https://doi.org/10.1016/j.poly.2024.117128

Özyürek, M., Güçlü, K., Tütem, E., Başkan, K. S., Erçağ, E., Çelik, S. E., Baki, S., Yıldız, L., Karaman, Ş., & Apak, R. (2011). A comprehensive review of CUPRAC methodology. Analytical Methods, 3(11), 2439. https://doi.org/10.1039/c1ay05320e DOI: https://doi.org/10.1039/c1ay05320e

Ortaboy, S., Karakurt, T., Kaya, B., Şahin, O., & Ülküseven, B. (2024). Manganese(III) complexes with a tetradentate thiosemicarbazone. Structural characterization, electrochemistry, antioxidant capability, molecular docking and dynamics simulation on the potential inhibitory activity of cyclin-dependent kinase 2. Polyhedron, 261, 117128. https://doi.org/10.1016/j.poly.2024.117128 DOI: https://doi.org/10.1016/j.poly.2024.117128

Pitucha, M., Ramos, P., Wojtunik-Kulesza, K., Głogowska, A., Stefańska, J., Kowalczuk, D., Monika, D., & Augustynowicz-Kopeć, E. (2023). Thermal analysis, antimicrobial and antioxidant studies of thiosemicarbazone derivatives. Journal of Thermal Analysis and Calorimetry, 148(10), 4223–4234. https://doi.org/10.1007/s10973-023-12029-z DOI: https://doi.org/10.1007/s10973-023-12029-z

Pohanka, M. (2023). Assays of antioxidant capacity: Optics and voltammetry. International Journal of Electrochemical Science, 18(10), 100276. https://doi.org/10.1016/j.ijoes.2023.100276 DOI: https://doi.org/10.1016/j.ijoes.2023.100276

Poladian, Q., Şahin, O., Karakurt, T., İlhan-Ceylan, B., & Kurt, Y. (2021). A new zinc(II) complex with N2O2-tetradentate schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron, 201, 115164. https://doi.org/10.1016/j.poly.2021.115164 DOI: https://doi.org/10.1016/j.poly.2021.115164

Poladian, Q., İlhan-Ceylan, B., Bölükbaşi, O., & Kurt, Y. (2023). Synthesis, characterization, DFT, non-covalent interactions and antioxidant activity of N2O2-type template complexes of Zn(II)-derived from 5-ethoxy-2-hydroxy-acetophenone-S-methylthiosemicarbazone. Journal of Coordination Chemistry, 76(9–10), 1281–1294. https://doi.org/10.1080/00958972.2023.2227756 DOI: https://doi.org/10.1080/00958972.2023.2227756

Rani, M., Devi, J., & Kumar, B. (2023). Thiosemicarbazones-based Co(II), Ni(II), Cu(II) and Zn(II) complexes: synthesis, structural elucidation, biological activities and molecular docking. Chemical Papers, 77(10), 6007–6027. https://doi.org/10.1007/s11696-023-02917-x DOI: https://doi.org/10.1007/s11696-023-02917-x

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037 DOI: https://doi.org/10.1155/2012/217037

Savir, S., Liew, J. W. K., Vythilingam, I., Lim, Y. a. L., Tan, C. H., Sim, K. S., Lee, V. S., Maah, M. J., & Tan, K. W. (2021). Nickel(II) Complexes with Polyhydroxybenzaldehyde and O,N,S tridentate Thiosemicarbazone ligands: Synthesis, Cytotoxicity, Antimalarial Activity, and Molecular Docking Studies. Journal of Molecular Structure, 1242, 130815. https://doi.org/10.1016/j.molstruc.2021.130815 DOI: https://doi.org/10.1016/j.molstruc.2021.130815

Saranya, S., Haribabu, J., Palakkeezhillam, V. N. V., Jerome, P., Gomathi, K., Rao, K. K., Babu, V. H. H. S., Karvembu, R., & Gayathri, D. (2019). Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. Journal of Molecular Structure, 1198, 126904. https://doi.org/10.1016/j.molstruc.2019.126904 DOI: https://doi.org/10.1016/j.molstruc.2019.126904

Yousef, T., & El-Reash, G. A. (2019). Synthesis, and biological evaluation of complexes based on thiosemicarbazone ligand. Journal of Molecular Structure, 1201, 127180. https://doi.org/10.1016/j.molstruc.2019.127180 DOI: https://doi.org/10.1016/j.molstruc.2019.127180

Zhang, X., Qi, F., Wang, S., Song, J., & Huang, J. (2019). Synthesis, structure, in silico ADME evaluation and in vitro antioxidant of (E)-N-(4-ethylphenyl)-2-(isomeric methylbenzylidene)thiosemicarbazone derivatives. Journal of Molecular Structure, 1199, 126972. https://doi.org/10.1016/j.molstruc.2019.126972 DOI: https://doi.org/10.1016/j.molstruc.2019.126972

Downloads

Published

2025-10-04

How to Cite

Poladian, Q. (2025). Thiosemicarbazone Ligands and TheirTransition Metal Complexes as Antioxidants: A Review. Journal of Natural Science Review, 3(3), 267–308. https://doi.org/10.62810/jnsr.v3i3.252

Issue

Section

Articles