Principles and Requirements of Battery Electrolytes: Ensuring Efficiency and Safety in Energy Storage

Authors

  • Reza Joia Chemistry Department, Education Faculty, Nimruz Higher Education Institute, 4301 Nimruz, Afghanistan
  • Naseer Mukhlis Department of Horticulture, Faculty of Agriculture, Nimruz Higher Education Institute, Nimruz 4301, Afghanistan
  • Meiram Atamanov Institute of Combustion Problems, 172 Bogenbay Batyr Str., 050012 Almaty, Kazakhstan
  • Sayed Abdullah Hossaini Department of Biology, Nimruz higher education institute, Nimruz, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v3i3.264

Keywords:

Battery performance, Electrolyte, Electrochemical stability, Energy storage, Ionic conductivity, Solid-state electrolytes.

Abstract

Electrolytes lie at the heart of every battery, serving as the medium that allows ions to move between electrodes and enabling energy to be stored and released efficiently. Their properties, such as ionic conductivity, electrochemical stability, and thermal resilience, directly shape the performance, safety, and lifespan of energy storage systems. As demand for reliable batteries grows in electric vehicles, renewable energy integration, and portable devices, the design of better electrolytes has become a critical research priority. This review brings together insights from a wide range of studies to examine the principles, requirements, and limitations of five major electrolyte systems: aqueous, organic, ionic liquid, solid-state, and redox-active types. Each category demonstrates clear strengths but also important trade-offs. Aqueous electrolytes remain affordable and eco-friendly yet struggle with narrow voltage windows. Organic systems deliver high energy density but introduce flammability concerns. Ionic liquids promise exceptional stability but remain expensive and viscous. Solid-state electrolytes enhance safety and energy density, though they face manufacturing and conductivity challenges. Redox-active systems stand out for durability and scalability, particularly in grid-level applications, but lack compactness. Taken together, the findings emphasize that no single solution is universal. Instead, electrolyte design must be tailored to the context, balancing performance, safety, cost, and sustainability.

Downloads

Download data is not yet available.

References

Albertus, P., Anandan, V., Ban, C., Balsara, N., Belharouak, I., & Buettner-Garrett. (2021). Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 6(4), 1399–1404. https://doi.org/10.1021/acsenergylett.1c00445 DOI: https://doi.org/10.1021/acsenergylett.1c00445

Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621–629. https://doi.org/10.1038/nmat2448 DOI: https://doi.org/10.1038/nmat2448

Armand, M., & Tarascon, J. M. (2008). Building Better Batteries. Nature, 451(7179), 652. https://doi.org/10.1038/451652a DOI: https://doi.org/10.1038/451652a

Balbuena, P. B. (2014). Electrolyte materials - Issues and challenges. AIP Conference Proceedings, 1597, 82–97. https://doi.org/10.1063/1.4878481 DOI: https://doi.org/10.1063/1.4878481

Borodin, O., Ren, X., Vatamanu, J., Von Wald Cresce, A., Knap, J., & Xu, K. (2017). Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Accounts of Chemical Research, 50(12), 2886–2894. https://doi.org/10.1021/acs.accounts.7b00486 DOI: https://doi.org/10.1021/acs.accounts.7b00486

Boz, B., Dev, T., Salvadori, A., & Schaefer, J. L. (2021). Review—Electrolyte and Electrode Designs for Enhanced Ion Transport Properties to Enable High-Performance Lithium Batteries. Journal of The Electrochemical Society, 168(9), 090501. https://doi.org/10.1149/1945-7111/ac1cc3 DOI: https://doi.org/10.1149/1945-7111/ac1cc3

Chattopadhyay, J., Pathak, T. S., & Santos, D. M. F. (2023). Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review. Polymers, 15(19). https://doi.org/10.3390/polym15193907 DOI: https://doi.org/10.3390/polym15193907

chen, li, Mullen, G., Roch, M., Cassity, C., Gouault, N., Fadamiro, H., Barletta, R., O’Brien, R., Sykora, R., Stenson, A., West, K., Horne, H., Hendrich, J., Xiang, K., & Davis, J. (2014). On the Formation of a Protic Ionic Liquid in Nature. Angewandte Chemie International Edition, 53. https://doi.org/10.1002/anie.201404402 DOI: https://doi.org/10.1002/anie.201404402

Chen, R., Bresser, D., Saraf, M., Gerlach, P., Balducci, A., Kunz, S., Schröder, D., Passerini, S., & Chen, J. (2020). A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem, 13(9), 2205–2219. https://doi.org/10.1002/cssc.201903382 DOI: https://doi.org/10.1002/cssc.201903382

Chen, S., Zhang, M., Zou, P., Sun, B., & Tao, S. (2022). Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 1805–1839. https://doi.org/10.1039/d2ee00004k DOI: https://doi.org/10.1039/D2EE00004K

Chennupati Jagadish,Robert Hull, R. M. O. (2020). Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Kamal K. Kar (ed.)). Springer Series in Materials Science. https://doi.org/https://doi.org/10.1007/978-3-030-43009-2 DOI: https://doi.org/10.1007/978-3-030-43009-2

Feng, R., Guo, Z., Meng, X., & Sun, C. (2025). Modeling and State of Charge Estimation of Vanadium Redox Flow Batteries: A Review. Energies, 18(17). https://doi.org/10.3390/en18174666 DOI: https://doi.org/10.3390/en18174666

Francisco, B. E., Jones, C. M., Lee, S. H., & Stoldt, C. R. (2012). Nanostructured all-solid-state supercapacitor based on Li 2S-P 2S 5 glass-ceramic electrolyte. Applied Physics Letters, 100(10), 1–6. https://doi.org/10.1063/1.3693521 DOI: https://doi.org/10.1063/1.3693521

Hamed, M. M., El-Tayeb, A., Moukhtar, I., El Dein, A. Z., & Abdelhameed, E. H. (2022). A review on recent key technologies of lithium-ion battery thermal management: External cooling systems. Results in Engineering, 16, 100703. https://doi.org/10.1016/J.RINENG.2022.100703 DOI: https://doi.org/10.1016/j.rineng.2022.100703

Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3), 15018. https://doi.org/10.1038/natrevmats.2015.18 DOI: https://doi.org/10.1038/natrevmats.2015.18

Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C., & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753. https://doi.org/10.1016/J.JPOWSOUR.2020.228753 DOI: https://doi.org/10.1016/j.jpowsour.2020.228753

Il’ina, E. A., Antonov, B. D., & Vlasov, M. I. (2020). Stability investigations of composite solid electrolytes based on Li7La3Zr2O12 in contact with LiCoO2. Solid State Ionics, 356, 115452. https://doi.org/10.1016/J.SSI.2020.115452 DOI: https://doi.org/10.1016/j.ssi.2020.115452

Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 16141. https://doi.org/10.1038/nenergy.2016.141 DOI: https://doi.org/10.1038/nenergy.2016.141

Joia, R., Modaqeq, T & Mohammadi, M. H. (2024). Principles and Requirements of Battery Membranes : Ensuring Efficiency and Safety in Energy Storage. European Journal of Theoretical and Applied Sciences, 2(2), 493–505. https://doi.org/10.59324/ejtas.2024.2(2).42 DOI: https://doi.org/10.59324/ejtas.2024.2(2).42

Karabelli Kaus, D., Birke, K., & Weeber, M. (2021). A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes. Batteries, 7, 18. https://doi.org/10.3390/batteries7010018 DOI: https://doi.org/10.3390/batteries7010018

Khan, M. (2015). 美国科学院学报 Materials Chemistry A 材料化学 a. Journal of Materials Chemistry A, 6(207890), 121.

Lee, H., Yoon, T., & Chae, O. B. (2024). Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes. Micromachines, 15(4). https://doi.org/10.3390/mi15040453 DOI: https://doi.org/10.3390/mi15040453

Li, Q., Chen, J., Fan, L., Kong, X., & Lu, Y. (2016). Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy and Environment, 1(1), 18–42. https://doi.org/10.1016/j.gee.2016.04.006 DOI: https://doi.org/10.1016/j.gee.2016.04.006

Ma, M., Zhang, M., Jiang, B., Du, Y., Hu, B., & Sun, C. (2023). A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces. Materials Chemistry Frontiers, 7(7), 1268–1297. https://doi.org/10.1039/d2qm01071b DOI: https://doi.org/10.1039/D2QM01071B

Miao, Y., Liu, L., Zhang, Y., Tan, Q., & Li, J. (2022). An overview of global power lithium-ion batteries and associated critical metal recycling. Journal of Hazardous Materials, 425. https://doi.org/10.1016/j.jhazmat.2021.127900 DOI: https://doi.org/10.1016/j.jhazmat.2021.127900

Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/J.EST.2023.109048 DOI: https://doi.org/10.1016/j.est.2023.109048

Nagarajan, S., Hwang, S., Jaye, C., Weiland, C., Meira, D. M., Balasubramanian, M., & Arava, L. M. R. (2025). Investigation of electrode-electrolyte interfaces to enable non-flammable Li-ion batteries operating up to 125°C with liquid electrolyte. Cell Reports Physical Science, 6(5), 102597. https://doi.org/10.1016/J.XCRP.2025.102597 DOI: https://doi.org/10.1016/j.xcrp.2025.102597

Ramachandran, R., & Wang, F. (2018). Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes. Supercapacitors - Theoretical and Practical Solutions. https://doi.org/10.5772/intechopen.70694 DOI: https://doi.org/10.5772/intechopen.70694

Rao, Y., Li, X., Zhao, S., Liu, P., Wu, F., Liu, X., Zhou, N., Fang, S., & Passerini, S. (2024). Fluorinated electrolyte formulations design enabling high-voltage and long-life lithium metal batteries. Nano Energy, 123, 109362. https://doi.org/https://doi.org/10.1016/j.nanoen.2024.109362 DOI: https://doi.org/10.1016/j.nanoen.2024.109362

Shah, R., Mittal, V., & Precilla, A. M. (2024). Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles. J, 7(3), 204–217. https://doi.org/10.3390/j7030012 DOI: https://doi.org/10.3390/j7030012

Soloveichik, G. L. (2015). Flow Batteries: Current Status and Trends. Chemical Reviews, 115(20), 11533–11558. https://doi.org/10.1021/cr500720t DOI: https://doi.org/10.1021/cr500720t

Taabodi, M. H., Niknam, T., Sharifhosseini, S. M., Asadi Aghajari, H., & Shojaeiyan, S. (2025). Electrochemical storage systems for renewable energy integration: A comprehensive review of battery technologies and grid-scale applications. Journal of Power Sources, 641, 236832. https://doi.org/10.1016/J.JPOWSOUR.2025.236832 DOI: https://doi.org/10.1016/j.jpowsour.2025.236832

Tron, A., Nosenko, A., & Mun, J. (2022). Thermal stability of active electrode material in contact with solid electrolyte. Journal of the Korean Ceramic Society, 59. https://doi.org/10.1007/s43207-021-00164-y DOI: https://doi.org/10.1007/s43207-021-00164-y

Wang, H., Xiong, X., Hu, H., & Liu, S. (2025). Three-Dimensional-Printed Polymer–Polymer Composite Electrolytes for All-Solid-State Li Metal Batteries. Polymers, 17(17). https://doi.org/10.3390/polym17172369 DOI: https://doi.org/10.3390/polym17172369

Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: a review. Journal of Applied Electrochemistry, 41(10), 1137–1164. https://doi.org/10.1007/s10800-011-0348-2 DOI: https://doi.org/10.1007/s10800-011-0348-2

Yang, A., Yang, C., Xie, K., Xin, S., Xiong, Z., Li, K., Guo, Y.-G., & You, Y. (2023). Benchmarking the Safety Performance of Organic Electrolytes for Rechargeable Lithium Batteries: A Thermochemical Perspective. ACS Energy Letters, 8(1), 836–843. https://doi.org/10.1021/acsenergylett.2c02683 DOI: https://doi.org/10.1021/acsenergylett.2c02683

Yang, H., & Wu, N. (2022). Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Science & Engineering, 10(5), 1643–1671. https://doi.org/https://doi.org/10.1002/ese3.1163 DOI: https://doi.org/10.1002/ese3.1163

Yu, F., Huang, M., Wu, P., Qiu, Z., Fan, L.-Q., Lin, J., & Lin, Y. (2014). A Redox-Mediator-Doped Gel Polymer Electrolyte Applied in Quasi-Solid-State Supercapacitors. Journal of Applied Polymer Science, 131. https://doi.org/10.1002/app.39784 DOI: https://doi.org/10.1002/app.39784

Zhang, H., Liu, X., Li, H., Hasa, I., & Passerini, S. (2021). Challenges and Strategies for High-Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie (International Ed. in English), 60(2), 598–616. https://doi.org/10.1002/anie.202004433 DOI: https://doi.org/10.1002/anie.202004433

Zheng, F., Kotobuki, M., Song, S., Lai, M. O., & Lu, L. (2018). Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 389, 198–213. https://doi.org/10.1016/J.JPOWSOUR.2018.04.022 DOI: https://doi.org/10.1016/j.jpowsour.2018.04.022

Zhong, C., Deng, Y., Hu, W., Sun, D., Han, X., Qiao, J., & Zhang, J. (2016). Electrolytes for electrochemical supercapacitors. In Electrolytes for Electrochemical Supercapacitors. https://doi.org/10.1201/b21497-6 DOI: https://doi.org/10.1201/b21497

Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., & Wang, G. (2019). Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 5(9), 2326–2352. https://doi.org/10.1016/J.CHEMPR.2019.05.009 DOI: https://doi.org/10.1016/j.chempr.2019.05.009

Downloads

Published

2025-10-04

How to Cite

Joia, R., Mukhlis, N., Atamanov, M., & Hossaini, S. A. (2025). Principles and Requirements of Battery Electrolytes: Ensuring Efficiency and Safety in Energy Storage . Journal of Natural Science Review, 3(3), 141–155. https://doi.org/10.62810/jnsr.v3i3.264

Issue

Section

Articles