Numerical and Symbolic Analysis for Mathematical Problem-Solving with Maple

Authors

  • Nasima Sawlat Faryab University, Department of Mathematic, Faculty of Education, Maymana, Afghanistan
  • Yalda Qani Faryab University, Department of Mathematic, Maymana, Afghanistan
  • Naqibullah Sadeqi Faryab University, Department of Mathematic, Maymana, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v2i3.75

Keywords:

Maple, Numerical integration, Solving nonlinear equations, Polynomial interpolation, Symbolic integration, Numerical methods

Abstract

This study explores the versatile capabilities of Maple, a widely used mathematical software, in addressing a wide range of numerical and symbolic computations essential for scientific and engineering applications. The researchers investigated Maple's diverse suite of tools, including numerical integration, nonlinear equation solving, polynomial interpolation, symbolic integration, and various numerical methods. Through an in-depth literature review, illustrated case studies, and detailed performance evaluations, the paper demonstrates the effectiveness and accuracy of Maple's computational approaches in dealing with complex problems in various areas of applied mathematics. This study's findings underscored Maple's tremendous value as a reliable and comprehensive software package for researchers, scientists, and professionals involved in advanced mathematical analysis and scientific computing. Furthermore, the paper highlighted Maple's versatility in creating high-quality three-dimensional plots, crucial for visualizing and analyzing complex mathematical and scientific data. Using either sets or lists, the ability to display multiple surfaces in a single three-dimensional plot showcases Maple's power in data visualization and communicating complex ideas. By positioning Maple as a powerful platform for solving versatile mathematical problems, this study highlights the software's indispensable role in advancing scientific discoveries and engineering innovations.

Downloads

Download data is not yet available.

References

Abell, M. L., & Braselton, J. P. (2016). Maple, by example. Academic Press. https://syaifulhamzah.files.wordpress.com/2012/12/maple-by-example.pdf

Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations (Vol. 61). Siam. https://www.google.com.af/books/edition/_/2iXovtfcL74C?hl=en&sa=X&ved=2ahUKEwj_oLKN_KOIAxWrTKQEHcarOCEQre8FegQIKBAF DOI: https://doi.org/10.1137/1.9781611971392

Burden, R. L., & Faires, J. D. (2010). Numerical analysis (9th ed.). Cengage Learning. https://www.academia.edu/47893273/Numerical_analysis_9th_Edition

Carette, J. (2004). Understanding expression simplification. In International Conference on Intelligent Computer Mathematics (pp. 31-45). Springer, Berlin, Heidelberg. https://dl.acm.org/doi/abs/10.1145/1005285.1005298 DOI: https://doi.org/10.1145/1005285.1005298

Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., & Watt, S. M. (1991). Maple V language reference manual. Springer Science & Business Media. https://link.springer.com/chapter/10.1007/978-1-4757-2133-1_1 DOI: https://doi.org/10.1007/978-1-4615-7386-9

Geddes, K. O., Czapor, S. R., & Labahn, G. (1996). Algorithms for computer algebra. Springer Science & Business Media. https://books.google.com/books?id=9fOUwkkRxT4C&printsec=frontcover&dq=Algorithms+for+Computer+Algebra+By+Keith+O.+Geddes,+Stephen+R.+Czapor,+George&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi55d7On6SIAxU9TqQEHVIrDAAQ6AF6BAgIEAI

Gruntz, D. (1996). On computing limit values symbolically using the Maple computer algebra system. Journal of Symbolic Computation, 21(4-6), 663-680. https://doi.org/10.1016/j.jsc.2010.08.011 DOI: https://doi.org/10.1016/j.jsc.2010.08.011

Heck, A. (2003). Introduction to Maple. Springer Science & Business Media. https://courses.cs.cornell.edu/cs99/2000FA/Book/front1.pdf DOI: https://doi.org/10.1007/978-1-4613-0023-6

Heck, A. (2013). Programming for engineers: A foundational approach to learning C and MATLAB. Springer Science & Business Media. https://www.amazon.com/Programming-Engineers-Foundational-Approach-Learning/dp/3642233023

Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo methods (Vol. 1). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527626212 DOI: https://doi.org/10.1002/9783527626212

Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations (Vol. 16). Siam. https://epubs.siam.org/doi/pdf/10.1137/1.9781611970944.bm DOI: https://doi.org/10.1137/1.9781611970944

Krommer, A. R., & Ueberhuber, C. K. (1998). Computational integration. SIAM. https://epubs.siam.org/doi/pdf/10.1137/1.9781611971460.bm DOI: https://doi.org/10.1137/1.9781611971460

Maftunzada, S. A. L. (2023). Splines interpolation analysis using Maple package. ADVANCED TECHNOLOGIES AND COMPUTER SCIENCE, (1), 4-9. http://89.250.84.92/index.php/atcs/article/view/109

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge University Press. https://books.google.com.af/books?id=1aAOdzK3FegC&sitesec=buy&source=gbs_vpt_read

Qani, Y. (2022). NEWTON–COTES FORMULAS FOR NUMERICAL INTEGRATION IN MAPLE. International Journal of Mathematics and Statistics Studies. International Journal of Mathematics and Statistics Studies, 10(2), 52-59. https://eajournals.org/ijmss/vol10-issue-2-2022/newton-cotes-formulas-for-numerical-integration-in-maple/

Quarteroni, A., Sacco, R., & Saleri, F. (2000). Numerical mathematics (Vol. 37). Springer Science & Business Media. https://books.google.com.af/books?id=m-bHBAAAQBAJ&sitesec=buy&source=gbs_vpt_read

Downloads

Published

2024-09-30

How to Cite

Sawlat, N., Qani, Y., & Sadeqi , N. (2024). Numerical and Symbolic Analysis for Mathematical Problem-Solving with Maple. Journal of Natural Science Review, 2(3), 29–46. https://doi.org/10.62810/jnsr.v2i3.75

Issue

Section

Articles