Modeling the Transmission Dynamics of the Ebola Virus: Effects of Quarantine and Vaccination

Authors

  • Wahidullah Zgham South Asian University, Faculty of Mathematics and Computer Science, New Delhi, India
  • Sarojkumar Sahani South Asian University, Faculty of Mathematics and Computer Science, New Delhi, India
  • Hezbullah Rahimi Kabul University, Faculty of Mathematics, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v2i3.88

Keywords:

Backward Bifurcation, Vaccination Strategies, Ebola Epidemic Dynamics, Mathematical Modeling, Quarantine Implementation, Stability Analysis

Abstract

Quarantine and vaccination of individuals suspected of exposure to infectious agents are fundamental public health strategies that have historically been employed to mitigate the transmission of contagious diseases within human populations. This study introduced a modified SEIVQRD deterministic model to evaluate the population-level effects of quarantine and vaccination on individuals potentially exposed to the Ebola virus. The study showed that the Model exhibits backward bifurcation when . This implies that even when the reproductive number  An unstable endemic and a stable disease-free equilibrium can coexist in less than one. This phenomenon arises from imperfect quarantine and indicates that while  is necessary for adequate infection control; it is no longer sufficient and creates additional challenges for effectively controlling Ebola. Furthermore, the sensitivity analysis revealed that the quarantine effectiveness parameter and the parameter related to the isolation of vulnerable individuals had less influence on the incidence of new Ebola cases. However, vaccinating non-quarantined susceptible individuals significantly affects the infection burden and can lower the reproductive value to less than one. Overall, the Model emphasizes the critical role of vaccination in reducing Ebola virus transmission. Although quarantine measures alone may not be sufficient, their combination with vaccination can significantly reduce infection rates.

Downloads

Download data is not yet available.

References

Alimi, A. A., & Ayoade, A. A. (2023). Mathematical modeling of the effect of vaccination on the dynamics of infectious diseases. Nepal Journal of Mathematical Sciences, 4(1), 1–10. https://doi.org/10.3126/njmathsci.v4i1.53151 DOI: https://doi.org/10.3126/njmathsci.v4i1.53151

Bisimwa, P., Biamba, C., Aborode, A. T., Cakwira, H., & Akilimali, A. (2022). Ebola virus disease outbreak in the Democratic Republic of the Congo: A mini-review. Annals of Medicine and Surgery, 80. https://doi.org/10.1016/j.amsu.2022.104213 DOI: https://doi.org/10.1016/j.amsu.2022.104213

Brabers, J. H. V. J. (2023). The spread of infectious diseases from a physics perspective. Biology Methods and Protocols, 8(1). https://doi.org/10.1093/biomethods/bpad010 DOI: https://doi.org/10.1093/biomethods/bpad010

Brettin, A., Rossi–Goldthorpe, R., Weishaar, K., & Erovenko, I. V. (2018). Ebola could be eradicated through voluntary vaccination. Royal Society Open Science, 5(1), 171591. https://doi.org/10.1098/rsos.171591 DOI: https://doi.org/10.1098/rsos.171591

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences & Engineering, 1(2), 361–404. https://doi.org/10.3934/mbe.2004.1.361 DOI: https://doi.org/10.3934/mbe.2004.1.361

Dénes, A., & Gumel, A. B. (2019). Modeling the impact of quarantine during an outbreak of Ebola virus disease. Infectious Disease Modelling, 4, 12–27. https://doi.org/10.1016/j.idm.2019.01.003 DOI: https://doi.org/10.1016/j.idm.2019.01.003

Desai, K., & Arora, P. (2023). Burden of infectious diseases and strategies of prevention. In Elsevier eBooks (pp. 49–61). https://doi.org/10.1016/b978-0-323-85730-7.00052-7 DOI: https://doi.org/10.1016/B978-0-323-85730-7.00052-7

Diekmann, O., Heesterbeek, J. a. P., & Roberts, M. G. (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873–885. https://doi.org/10.1098/rsif.2009.0386 DOI: https://doi.org/10.1098/rsif.2009.0386

Dubey, P., Dubey, B., & Dubey, U. S. (2016). An SIR Model with Nonlinear Incidence Rate and Holling Type III Treatment Rate. In Springer proceedings in mathematics & statistics (pp. 63–81). https://doi.org/10.1007/978-81-322-3640-5_4 DOI: https://doi.org/10.1007/978-81-322-3640-5_4

Harris, P. J., & Bodmann, B. E. J. (2022). A mathematical model for simulating the spread of a disease through a country divided into geographical regions with different population densities. Journal of Mathematical Biology, 85(4). https://doi.org/10.1007/s00285-022-01803-6 DOI: https://doi.org/10.1007/s00285-022-01803-6

Isiaka, N. a. B., Anakwenze, N. V. N., Ilodinso, N. C. R., Anaukwu, N. C. G., Ezeokoli, N. C. M., Noi, N. S. M., Agboola, N. G. O., & Adonu, N. R. M. (2024). Harnessing artificial intelligence for early detection and management of infectious disease outbreaks. International Journal of Innovative Research and Development. https://doi.org/10.24940/ijird/2024/v13/i2/feb24016 DOI: https://doi.org/10.24940/ijird/2024/v13/i2/FEB24016

Jain, S., Khaiboullina, S., Martynova, E., Morzunov, S., & Baranwal, M. (2023). Epidemiology of Ebolaviruses from an Etiological Perspective. Pathogens, 12(2), 248. https://doi.org/10.3390/pathogens12020248 DOI: https://doi.org/10.3390/pathogens12020248

Liu, S. (2023). Disease mechanism and treatment method of Ebola virus. Highlights in Science Engineering and Technology, 45, 116–121. https://doi.org/10.54097/hset.v45i.7331 DOI: https://doi.org/10.54097/hset.v45i.7331

Maldonado, Y. A. (2023). Lessons from a House on Fire—from smallpox to polio. The Journal of Infectious Diseases, 227(9), 1025–1027. https://doi.org/10.1093/infdis/jiad017 DOI: https://doi.org/10.1093/infdis/jiad017

Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 DOI: https://doi.org/10.1016/j.jtbi.2008.04.011

Niyukuri, D., Sinigirira, K. J. G., De Dieu Kwizera, J., & Adam, S. O. A. (2023, June 3). Ebola transmission dynamics: will future Ebola outbreaks become cyclic? arXiv.org. http://arxiv.org/abs/2306.02075

Nurwijaya, S., Kurniati, R., MA, & Sugiarto, S. (2023). DYNAMICAL SYSTEM FOR EBOLA OUTBREAK WITHIN QUARANTINE AND VACCINATION TREATMENTS. BAREKENG JURNAL ILMU MATEMATIKA DAN TERAPAN, 17(2), 0615–0624. https://doi.org/10.30598/barekengvol17iss2pp0615-0624 DOI: https://doi.org/10.30598/barekengvol17iss2pp0615-0624

Pecoraro, F., Luzi, D., & Clemente, F. (2021). The efficiency in the ordinary hospital bed management: A comparative analysis in four European countries before the COVID-19 outbreak. PLoS ONE, 16(3), e0248867. https://doi.org/10.1371/journal.pone.0248867 DOI: https://doi.org/10.1371/journal.pone.0248867

Rai, N. R., Sharma, N. A., & Negi, N. S. (2024). Emerging infectious diseases: a persistent threat to the community. International Healthcare Research Journal, 7(12), RV17–RV20. https://doi.org/10.26440/ihrj/0712.03626 DOI: https://doi.org/10.26440/IHRJ/0712.03626

Sabaté, M. C. (2023). Mathematical modelling to study infectious diseases: from understanding to prediction. https://doi.org/10.5821/dissertation-2117-358138 DOI: https://doi.org/10.5821/dissertation-2117-358138

Siddique, M. P. (2022). Coping with Contagious Diseases: A Global Perspective. Journal of Islamic International Medical College, 17(3), 148–151. https://doi.org/10.57234/1543 DOI: https://doi.org/10.57234/1543

Samadi, A. (2024). Impacts of Climate Change on Vector-Borne Diseases of Animals and Humans with Special Emphasis on Afghanistan. Journal of Natural Science Review, 2(1), 1–20. https://doi.org/10.62810/jnsr.v2i1.35 DOI: https://doi.org/10.62810/jnsr.v2i1.35

Umutesi, G., Moon, T. D., Makam, J. K., Diomande, F., Cherry, C. B., Tuopileyi, R. N., II, Zakari, W., & Craig, A. S. (2023). Evaluation of acute flaccid paralysis surveillance performance before and during the 2014-2015 Ebola virus disease outbreak in Guinea and Liberia. Pan African Medical Journal, 45. https://doi.org/10.11604/pamj.2023.45.190.21480 DOI: https://doi.org/10.11604/pamj.2023.45.190.21480

Downloads

Published

2024-09-30

How to Cite

Zgham, W., Sahani, S., & Rahimi, H. (2024). Modeling the Transmission Dynamics of the Ebola Virus: Effects of Quarantine and Vaccination. Journal of Natural Science Review, 2(3), 97–120. https://doi.org/10.62810/jnsr.v2i3.88

Issue

Section

Articles