Exploring the Multi-dimensional Impact of Insects on the Green Revolution

Authors

  • Abdul Hamid Nazari Helmand University, Department of Plant Protection, Faculty of Agriculture, Afghanistan
  • Zal Khan Abdullah Helmand University, Department of Plant Protection, Faculty of Agriculture, Afghanistan
  • Mohammad Yar Malakzai Helmand University, Department of Agronomy, Faculty of Agriculture, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.126

Keywords:

Beneficial insects, Biocontrol agents, Green revolution, Nutrient recyclers, Pollutants, Decomposers

Abstract

The Green Revolution marks a significant era of agricultural advancement in the mid-20th century, playing a vital role in addressing global food security challenges. While the contributions of crop breeding, mechanization, and agrochemical use to this movement are well-recognized, insects' complex and varied impact remains less explored. This paper highlights insects' diverse roles during this transformative period. Drawing on a range of scientific research, scholarly publications, and online scientific databases, this review examines insects' beneficial and detrimental influences on the Green Revolution. Pollinators like bees and butterflies supported crop fertilization, boosting yields and preserving genetic diversity. At the same time, pest insects pose serious threats to crop productivity, often resulting in considerable losses if uncontrolled. Developing and applying insecticides were pivotal in mitigating these risks and safeguarding crops against destructive pests. Insects also shaped the ecological balance within agricultural systems; predatory insects, like ladybugs and lacewings, naturally controlled pest populations, reducing dependency on synthetic insecticides. Decomposers, such as dung beetles, contributed to nutrient recycling and soil health, indirectly supporting crop growth. However, the Green Revolution’s reliance on high-yielding crop varieties and intensive farming practices unintendedly affected insect populations and biodiversity. The widespread adoption of monocultures and heavy pesticide use led to habitat loss and a decline in insect diversity, which may disrupt ecosystem services and affect long-term sustainability. Understanding the multifaceted role of insects in the Green Revolution is essential for guiding sustainable agricultural practices in the future.

Downloads

Download data is not yet available.

References

Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual review of entomology, 36(1), 561-586. DOI: https://doi.org/10.1146/annurev.ento.36.1.561

Andow, D. A., & Risch, S. J. (1985). Predation in diversified agroecosystems: relations between a coccinellid predator Coleomegilla maculata and its food. Journal of Applied Ecology, 357-372. DOI: https://doi.org/10.2307/2403170

Bareke, T., & Addi, A. (2019). Effect of honeybee pollination on seed and fruit yield of agricultural crops in Ethiopia. MOJ Ecology and Environmental Sciences, 4(5), 205-209. DOI: https://doi.org/10.15406/mojes.2019.04.00155

Belovsky, G. E., & Slade, J. B. (2000). Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences, 97(26), 14412-14417. DOI: https://doi.org/10.1073/pnas.250483797

Benbi, D. K. (2017). Nitrogen balances of intensively cultivated rice–wheat cropping systems in original green revolution states of India. In The Indian nitrogen assessment (pp. 77-93). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-811836-8.00006-9

Brainerd, E., & Menon, N. (2014). Seasonal effects of water quality: The hidden costs of the Green Revolution to infant and child health in India. Journal of Development Economics, 107, 49-64. DOI: https://doi.org/10.1016/j.jdeveco.2013.11.004

Broatch, J. S., Dosdall, L. M., O’Donovan, J. T., Harker, K. N., & Clayton, G. W. (2010). Responses of the specialist biological control agent, Aleochara bilineata, to vegetational diversity in canola agroecosystems. Biological Control, 52(1), 58-67. DOI: https://doi.org/10.1016/j.biocontrol.2009.08.009

Connell, J. H. (2000). Pollination of almonds: practices and problems. HortTechnology, 10(1), 116-119. DOI: https://doi.org/10.21273/HORTTECH.10.1.116

Cook, D. C., Thomas, M. B., Cunningham, S. A., Anderson, D. L., & De Barro, P. J. (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecological Applications, 17(6), 1832-1840. DOI: https://doi.org/10.1890/06-1632.1

Cunningham, S. A., FitzGibbon, F., & Heard, T. A. (2002). The future of pollinators for Australian agriculture. Australian journal of agricultural research, 53(8), 893-900. DOI: https://doi.org/10.1071/AR01186

Daily, G. C. (Ed.). (1997). Nature's services: societal dependence on natural ecosystems. Island press.

Damalas, C. A. (2009). Understanding benefits and risks of pesticide use. Sci. Res. Essays, 4(10), 945-949.

Davis, J. R., Brownson, R. C., & Garcia, R. (1992). Family pesticide use in the home, garden, orchard, and yard. Archives of environmental contamination and toxicology, 22, 260-266. DOI: https://doi.org/10.1007/BF00212083

Dhaliwal, G. S., Dhawan, A. K., & Singh, R. (2007). Biodiversity and ecological agriculture: Issues and perspectives. Indian Journal of Ecology, 34(2), 100-109.

Dhaliwal, G. S., Jindal, V., & Dhawan, A. K. (2010). Insect pest problems and crop losses: changing trends. Indian Journal of Ecology, 37(1), 1-7.

Dicke, M. (2017). Ecosystem services of insects. In Insects as food and feed: From production to consumption (pp. 61-76). Wageningen Academic Publishers.

Evans, T. A., Dawes, T. Z., Ward, P. R., & Lo, N. (2011). Ants and termites increase crop yield in a dry climate. Nature communications, 2(1), 262. DOI: https://doi.org/10.1038/ncomms1257

Farrell, B. D. (1998). " Inordinate Fondness" explained: why are there so many beetles?. Science, 281(5376), 555-559. DOI: https://doi.org/10.1126/science.281.5376.555

Farwig, N., Brandl, R., Siemann, S., Wiener, F., & Müller, J. (2014). Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia, 175, 1291-1300. DOI: https://doi.org/10.1007/s00442-014-2974-y

Garratt, M. P., Bishop, J., Degani, E., Potts, S. G., Shaw, R. F., Shi, A., & Roy, S. (2018). Insect pollination as an agronomic input: Strategies for oilseed rape production. Journal of Applied Ecology, 55(6), 2834-2842. DOI: https://doi.org/10.1111/1365-2664.13153

Gordon, J., & Davis, L. (2003). Valuing honeybee pollination: a report for the Rural Industries Research and Development Corporation. Rural Industries Research & Development Corporation.

Gullan, P. J., & Cranston, P. S. (2014). The insects: an outline of entomology. John Wiley & Sons.

Hafi, A., & Hafi, A. (2012). A benefit-cost framework for responding to an incursion of Varroa destructor. ABARES.

Halder, J., Rai, A. B., Dey, D., & Singh, B. (2018). Abundance of important parasitoids in the vegetable ecosystem and their prospects in integrated pest management. Journal of Entomology and Zoology Studies, 6(4), 762-769.

Halder, S., Ghosh, S., Khan, R., Khan, A. A., Perween, T., & Hasan, M. A. (2019). Role of pollination in fruit crops: A review. The Pharma Innovation Journal, 8(5), 695-702.

Haldhar, S. M., Kumar, R., Samadia, D. K., Singh, B., & Singh, H. (2018). Role of insect pollinators and pollinizers in arid and semi-arid horticultural crops. Journal of Agriculture and Ecology, 5, 1-25. DOI: https://doi.org/10.53911/JAE.2018.5101

Hall, R. (1995). Challenges and prospects of integrated pest management. Novel Approaches to Integrated Pest Management., 1-99.

Huang, H. T., & Yang, P. (1987). The ancient cultured citrus ant. BioScience, 37(9), 665-671. DOI: https://doi.org/10.2307/1310713

Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., ... & Vogler, A. P. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318(5858), 1913-1916. DOI: https://doi.org/10.1126/science.1146954

Hunter, M. D. (2001). Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agricultural and Forest Entomology, 3(2), 77-84. DOI: https://doi.org/10.1046/j.1461-9563.2001.00100.x

Inouye, D. W., & Ogilvie, J. E. (2001). Pollinators, role of. Encyclopedia of Biodiversity, 723-730. DOI: https://doi.org/10.1006/rwbd.1999.0264

Jankielsohn, A. (2018). The importance of insects in agricultural ecosystems. Advances in Entomology, 6(2), 62-73. DOI: https://doi.org/10.4236/ae.2018.62006

John, D. A., & Babu, G. R. (2021). Lessons from the aftermaths of green revolution on food system and health. Frontiers in sustainable food systems, 5, 644559. DOI: https://doi.org/10.3389/fsufs.2021.644559

Keogh, R., Robinson, A., & Mullins, I. J. (2010). Pollination Aware: The real value of pollination in Australia. RIRDC.

Khush, G. S. (2001). Green revolution: the way forward. Nature reviews genetics, 2(10), 815-822. DOI: https://doi.org/10.1038/35093585

Kim, K. C. (1993). Biodiversity, conservation and inventory: why insects matter. Biodiversity & Conservation, 2, 191-214. DOI: https://doi.org/10.1007/BF00056668

Kremen, C., Williams, N. M., Bugg, R. L., Fay, J. P., & Thorp, R. W. (2004). The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecology letters, 7(11), 1109-1119. DOI: https://doi.org/10.1111/j.1461-0248.2004.00662.x

Lamichhane, J. R. (2017). Pesticide use and risk reduction in European farming systems with IPM: An introduction to the special issue. Crop Prot, 97, 1-6. DOI: https://doi.org/10.1016/j.cropro.2017.01.017

Macfadyen, S., Kramer, E. A., Parry, H. R., & Schellhorn, N. A. (2015). Temporal change in vegetation productivity in grain production landscapes: linking landscape complexity with pest and natural enemy communities. Ecological Entomology, 40, 56-69. DOI: https://doi.org/10.1111/een.12213

Manosathiyadevan, M., Bhuvaneshwari, V., & Latha, R. (2017). Impact of insects and pests in loss of crop production: a review. Sustainable agriculture towards food security, 57-67. DOI: https://doi.org/10.1007/978-981-10-6647-4_4

Mattson, W. J., & Addy, N. D. (1975). Phytophagous insects as regulators of forest primary production. Science, 190(4214), 515-522. DOI: https://doi.org/10.1126/science.190.4214.515

Merritt, R. W., De Jong, G. D., Benbow, M. E., Tomberlin, J. K., & Tarone, A. M. (2015). Arthropod communities in terrestrial environments. Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, FL, 65-92.

Metcalfe, D. B., Asner, G. P., Martin, R. E., Silva Espejo, J. E., Huasco, W. H., Farfán Amézquita, F. F., ... & Malhi, Y. (2014). Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology letters, 17(3), 324-332. DOI: https://doi.org/10.1111/ele.12233

Monck, M., Gordon, J., & Hanslow, K. (2008). Analysis of the market for pollination services in Australia. Rural Industries Research and Development Corporation.

Morse, R. A., & Calderone, N. W. (2000). The value of honey bees as pollinators of US crops in 2000. Bee culture, 128(3), 1-15.

Naeem, S., Duffy, J. E., & Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. science, 336(6087), 1401-1406. DOI: https://doi.org/10.1126/science.1215855

Nazir, T., Khan, S., & Qiu, D. (2019). Biological control of insect pest. Pests Control and Acarology, 21. DOI: https://doi.org/10.5772/intechopen.81431

Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., Favila, M. E., & Network, T. S. R. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, 141(6), 1461-1474. DOI: https://doi.org/10.1016/j.biocon.2008.04.011

Nickel, J. L. (1973). Pest situation in changing agricultural systems—a review. Bulletin of the ESA, 19(3), 136-142. DOI: https://doi.org/10.1093/besa/19.3.136

Norris, R. F., & Kogan, M. (2005). Ecology of interactions between weeds and arthropods. Annu. Rev. Entomol., 50, 479-503. DOI: https://doi.org/10.1146/annurev.ento.49.061802.123218

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321-326. DOI: https://doi.org/10.1111/j.1600-0706.2010.18644.x

Padamshali, S., & Mandal, S. K. (2018). Effect of honeybee (A. mellifera) pollination on yield and yield attributing parameters of onion (Allium cepa L.). Int J Curr Microbiol Appl Sci, 7, 4843-4848.

Patidar, B. K., Ojha, K. N., & Khan, I. U. (2017). Role of honeybee (Apis mellifera) in enhancing yield of mustard in humid region of Rajasthan, India. Int. J. Curr. Microbiol. App. Sci, 6(7), 1879-1882. DOI: https://doi.org/10.20546/ijcmas.2017.607.224

Perrin, R. (1976). Pest management in multiple cropping systems. Agro-ecosystems, 3, 93-118. DOI: https://doi.org/10.1016/0304-3746(76)90110-4

Pimentel, D. (1961). Species diversity and insect population outbreaks. Annals of the entomological society of America, 54(1), 76-86. DOI: https://doi.org/10.1093/aesa/54.1.76

Pingali, P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proceedings of the national academy of sciences, 109(31), 12302-12308. DOI: https://doi.org/10.1073/pnas.0912953109

Richards, E. N., & Goff, M. L. (1997). Arthropod succession on exposed carrion in three contrasting tropical habitats on Hawaii Island, Hawaii. Journal of medical entomology, 34(3), 328-339. DOI: https://doi.org/10.1093/jmedent/34.3.328

Risch, S. J. (1983). Intercropping as cultural pest control: prospects and limitations. Environmental Management, 7, 9-14. DOI: https://doi.org/10.1007/BF01867035

Root, R. B. (1973). Organization of a plant‐arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological monographs, 43(1), 95-124. DOI: https://doi.org/10.2307/1942161

Roubik, D. W. (Ed.). (1995). Pollination of cultivated plants in the tropics (Vol. 118). Food & Agriculture Organization.

Samways, M. J. (1993). Insects in biodiversity conservation: some perspectives and directives. Biodiversity & Conservation, 2, 258-282. DOI: https://doi.org/10.1007/BF00056672

Scholtz, C. H., & Mansell, M. W. (2017). Insect biodiversity in the Afrotropical Region. Insect biodiversity: science and society, 93-109. DOI: https://doi.org/10.1002/9781118945568.ch5

Seni, A., & Chongtham, S. (2013). Papaya mealybug Paracoccus marginatus williams & granara de willink (Hemiptera: pseudococcidae), acurrent threat to agriculture-A review. Agricultural Reviews, 34(3), 216-222. DOI: https://doi.org/10.5958/j.0976-0741.34.3.006

Shakeel, M., & Inayatullah, M. (2013). Impact of insect pollinators on the yield of canola (Brassica napus) in Peshawar, Pakistan. Journal of Agricultural and Urban Entomology, 29(1), 1-5. DOI: https://doi.org/10.3954/JAUE12-07.1

Sihag, R. C. (1986). Insect pollination increases seed production in cruciferous and umbelliferous crops. Journal of Apicultural Research, 25(2), 121-126. DOI: https://doi.org/10.1080/00218839.1986.11100704

Singh, R. B. (2000). Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agriculture, ecosystems & environment, 82(1-3), 97-103. DOI: https://doi.org/10.1016/S0167-8809(00)00219-X

Statista, (2023). Agricultural consumption of pesticides worldwide in 2021, by type(in 1,000 metric tons). Statista Research Department, https://www.statista.com/statistics/1263206/global-pesticide-use-by-type/

Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., ... & Linsenmair, E. K. (2017). Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7(1), 17691. DOI: https://doi.org/10.1038/s41598-017-17970-2

Stork, N. E., McBroom, J., Gely, C., & Hamilton, A. J. (2015). New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences, 112(24), 7519-7523. DOI: https://doi.org/10.1073/pnas.1502408112

Sushil, S. N., Stanley, J., Hedau, N. K., & Bhatt, J. C. (2013). Enhancing seed production of three Brassica vegetables by honey bee pollination in northwestern Himalayas of India. Universal Journal of Agricultural Research, 1(3), 49-53. DOI: https://doi.org/10.13189/ujar.2013.010301

Tahvanainen, J. O., & Root, R. B. (1972). The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia, 10, 321-346. DOI: https://doi.org/10.1007/BF00345736

Van Lenteren, J. C. (2012). IOBC Internet book of biological control, Version 6. International Organization for Biological Control. Available at: http://www. iobcglobal. org/download/IOBC_InternetBookBiCoVersion6Spring2012. pdf.

Vandermeer, J. (1989). The ecology of intercropping. Cambridge University Press, New York. DOI: https://doi.org/10.1017/CBO9780511623523

Vinícius-Silva, R., Parma, D. D. F., Tostes, R. B., Arruda, V. M., & Werneck, M. D. V. (2017). Importance of bees in pollination of Solanum lycopersicum L.(Solanaceae) in open-field of the Southeast of Minas Gerais State, Brazil. Hoehnea, 44, 349-360. DOI: https://doi.org/10.1590/2236-8906-07/2017

Waterhouse, D. F., & Sands, D. P. A. (2001). Classical biological control of arthropods in Australia (No. 435-2016-33696).

Williams, C. B. (1947). The field of research in preventive entomology: Address of the president of the association of applied biologists, delivered to the annual meeting on Friday, 21 February 1947. Annals of Applied Biology, 34(2), 175-185. DOI: https://doi.org/10.1111/j.1744-7348.1947.tb06353.x

Zhang, Z. Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Magnolia press. DOI: https://doi.org/10.11646/zootaxa.3148.1.2

Downloads

Published

2024-11-23

How to Cite

Nazari, A. H., Abdullah, Z. K., & Malakzai, M. Y. (2024). Exploring the Multi-dimensional Impact of Insects on the Green Revolution. Journal of Natural Science Review, 2(Special.Issue), 221–238. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.126