Development Approaches of Wheat (Triticum Aestivum) Cultivars for Achieving Food Security in Afghanistan

Authors

  • Sayed Qadir Danishiar Department of Biotechnology and Seed Production, Agriculture Faculty, Kabul University, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.130

Keywords:

Double Haploid, Genetic Modification, Line Development, Wheat Breeding, Wheat Breeding Strategies

Abstract

Wheat (Triticum aestivum) is considered a staple crop that provides most of our energy and nutritional needs while also making up most of our diet in Afghanistan. However, drought stress and climate change are the obstacles to producing enough wheat. High-yielding cultivars resistant to biological and non-biological stresses must be produced using various techniques, including genetic modification and selection. Afghanistan has recently experienced extreme weather variations, which have significantly impacted the evolution of diseases, pests, and the climate. Rapid genetic improvement is required for crop resistance to remain stable in challenging conditions. The major objective of this article is to review wheat breeding methods such as rapid breeding (RB), double haploid (DH), biotechnological improvement (BI), genomic selection (GS), and Genotype-phenotype interaction evaluation (G x E). The traditional development period, which is typically 10–12 years, can be shortened to less than 5 years by integrating the techniques above simultaneously. The precise information on breeding techniques appropriate for Afghanistan's climate and topography is the main focus of this research, and it will be crucial to the wheat breeding program.

Downloads

Download data is not yet available.

References

Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology, and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010 DOI: https://doi.org/10.1016/j.agwat.2015.04.010

Allen, A. M., Winfield, M. O., Burridge, A. J., Downie, R. C., Benbow, H. R., Barker, G. L. A., Wilkinson, P. A., Coghill, J., Waterfall, C., Davassi, A., Scopes, G., Pirani, A., Webster, T., Brew, F., Bloor, C., Griffiths, S., Bentley, A. R., Alda, M., Jack, P., … Edwards, K. J. (2017). Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal, 15(3), 390–401. https://doi.org/10.1111/pbi.12635 DOI: https://doi.org/10.1111/pbi.12635

Baenziger, P. S. (2016). Wheat Breeding and Genetics. Reference Module in Food Science, December 2016. https://doi.org/10.1016/b978-0-08-100596-5.03001-8 DOI: https://doi.org/10.1016/B978-0-08-100596-5.03001-8

Barkley, A., Tack, J., Nalley, L. L., Bergtold, J., Bowden, R., & Fritz, A. (2014). Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011. Agronomy Journal, 106(1), 227–235. https://doi.org/10.2134/agronj2013.0388 DOI: https://doi.org/10.2134/agronj2013.0388

Bartoš, P., Šíp, V., Chrpová, J., Vacke, J., Stuchlíková, E., Blažková, V., Šárová, J., & Hanzalová, A. (2002). Achievements and prospects of wheat breeding for disease resistance. Czech Journal of Genetics and Plant Breeding, 38(1), 16–28. https://doi.org/10.17221/6107-cjgpb DOI: https://doi.org/10.17221/6107-CJGPB

Bolton, M. D., Thomma, B. P. H. J., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1), 1–16. https://doi.org/10.1111/j.1364-3703.2005.00316.x DOI: https://doi.org/10.1111/j.1364-3703.2005.00316.x

Bonnett, D. G., Rebetzke, G. J., & Spielmeyer, W. (2005). Strategies for efficient implementation of molecular markers in wheat breeding. Molecular Breeding, 15(1), 75–85. https://doi.org/10.1007/s11032-004-2734-5 DOI: https://doi.org/10.1007/s11032-004-2734-5

Dong, C., Dalton‐Morgan, J., Vincent, K., & Sharp, P. (2009). A Modified TILLING Method for Wheat Breeding. The Plant Genome, 2(1), 39–47. https://doi.org/10.3835/plantgenome2008.10.0012 DOI: https://doi.org/10.3835/plantgenome2008.10.0012

Fu, Y. B., & Somers, D. J. (2009). Genome-wide reduction of genetic diversity in wheat breeding. Crop Science, 49(1), 161–168. https://doi.org/10.2135/cropsci2008.03.0125 DOI: https://doi.org/10.2135/cropsci2008.03.0125

Gupta, M., Atri, C., Agarwal, N., & Banga, S. S. (2016). Development and molecular-genetic characterization of a stable Brassica allohexaploid. Theoretical and Applied Genetics, 129(11), 2085–2100. https://doi.org/10.1007/s00122-016-2759-2 DOI: https://doi.org/10.1007/s00122-016-2759-2

Gupta, P. K., Varshney, R. K., Sharma, P. C., & Ramesh, B. (1999). Molecular markers and their applications in wheat breeding. Plant Breeding, 118(5), 369–390. https://doi.org/10.1046/j.1439-0523.1999.00401.x DOI: https://doi.org/10.1046/j.1439-0523.1999.00401.x

Heffner, E. L., Jannink, J., & Sorrells, M. E. (2011). Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program. The Plant Genome, 4(1), 65–75. https://doi.org/10.3835/plantgenome2010.12.0029 DOI: https://doi.org/10.3835/plantgenome.2010.12.0029

Kim, Y. T., Prusky, D., & Rollins, J. A. (2007). An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Molecular Plant Pathology, 8(5), 611–622. https://doi.org/10.1111/j.1364-3703.2007.00423.x DOI: https://doi.org/10.1111/j.1364-3703.2007.00423.x

Kiszonas, A. M., & Morris, C. F. (2018). Wheat breeding for quality: A historical review. Cereal Chemistry, 95(1), 17–34. https://doi.org/10.1094/CCHEM-05-17-0103-FI DOI: https://doi.org/10.1094/CCHEM-05-17-0103-FI

Koebner, R. M. D., & Summers, R. W. (2003). 21st century wheat breeding: Plot selection or plate detection? Trends in Biotechnology, 21(2), 59–63. https://doi.org/10.1016/S0167-7799(02)00036-7 DOI: https://doi.org/10.1016/S0167-7799(02)00036-7

Kuchel, H., Fox, R., Reinheimer, J., Mosionek, L., Willey, N., Bariana, H., & Jefferies, S. (2007). The successful application of a marker-assisted wheat breeding strategy. Molecular Breeding, 20(4), 295–308. https://doi.org/10.1007/s11032-007-9092-z DOI: https://doi.org/10.1007/s11032-007-9092-z

Kuchel, H., Ye, G., Fox, R., & Jefferies, S. (2005). Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Molecular Breeding, 16(1), 67–78. https://doi.org/10.1007/s11032-005-4785-7 DOI: https://doi.org/10.1007/s11032-005-4785-7

Kulkarni, M., Soolanayakanahally, R., Ogawa, S., Uga, Y., Selvaraj, M. G., & Kagale, S. (2017). Drought response in wheat: Key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Frontiers in Chemistry, 5(DEC), 1–13. https://doi.org/10.3389/fchem.2017.00106 DOI: https://doi.org/10.3389/fchem.2017.00106

Kweon, M., Slade, L., & Levine, H. (2011). Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding-A review. Cereal Chemistry, 88(6), 537–552. https://doi.org/10.1094/CCHEM-07-11-0092 DOI: https://doi.org/10.1094/CCHEM-07-11-0092

Larkin, D. L., Lozada, D. N., & Mason, R. E. (2019). Genomic selection—considerations for successful implementation in wheat breeding programs. Agronomy, 9(9), 1–18. https://doi.org/10.3390/agronomy9090479 DOI: https://doi.org/10.3390/agronomy9090479

Lehnert, H., Serfling, A., Friedt, W., & Ordon, F. (2018). Genome-wide association studies reveal genomic regions associated with the response of wheat (triticum aestivum l.) to mycorrhizae under drought stress conditions. Frontiers in Plant Science, 871(December). https://doi.org/10.3389/fpls.2018.01728 DOI: https://doi.org/10.3389/fpls.2018.01728

Luo, X., Yang, J., Zhu, Z., Huang, L., Ali, A., Javed, H. H., Zhang, W., Zhou, Y., Yin, L., Xu, P., Liang, X., Li, Y., Wang, J., Zou, Q., Gong, W., Shi, H., Tao, L., Kang, Z., Tang, R., … Fu, S. (2021). Genetic characteristics and ploidy trigger the high inducibility of double haploid (DH) inducer in Brassica napus. BMC Plant Biology, 21(1), 1–17. https://doi.org/10.1186/s12870-021-03311-z DOI: https://doi.org/10.1186/s12870-021-03311-z

Martínez, B., & Gilabert, M. A. (2009). Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 113(9), 1823–1842. https://doi.org/10.1016/j.rse.2009.04.016 DOI: https://doi.org/10.1016/j.rse.2009.04.016

MAURYA, A. K. (2019). Impact of different substrates for spawn production and production of milky mushroom (Calocybe indica). International Journal of Pharma and Bio Sciences, 10(3). https://doi.org/10.22376/ijpbs.2019.10.3.b5-10 DOI: https://doi.org/10.22376/ijpbs.2019.10.3.b5-10

Mohandas, S., & Ravishankar, K. V. (2016). Banana: Genomics and transgenic approaches for genetic improvement. In Banana: Genomics and Transgenic Approaches for Genetic Improvement. https://doi.org/10.1007/978-981-10-1585-4 DOI: https://doi.org/10.1007/978-981-10-1585-4

Muradi, A. J., & Boz, I. (2018). The contribution of Agriculture Sector in the Economy of Afghanistan. International Journal of Scientific Research and Management (IJSRM), 6(10), 750–755. https://doi.org/10.18535/ijsrm/v6i10.em04 DOI: https://doi.org/10.18535/ijsrm/v6i10.em04

Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M. D., & Tsilo, T. J. (2016). Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture, 15(5), 935–943. https://doi.org/10.1016/S2095-3119(15)61102-9 DOI: https://doi.org/10.1016/S2095-3119(15)61102-9

Mwathi, M. W., Gupta, M., Quezada-Martinez, D., Pradhan, A., Batley, J., & Mason, A. S. (2020). Fertile allohexaploid Brassica hybrids obtained from crosses between B. oleracea and B. juncea via ovule rescue and colchicine treatment of cuttings. Plant Cell, Tissue and Organ Culture, 140(2), 301–313. https://doi.org/10.1007/s11240-019-01728-x DOI: https://doi.org/10.1007/s11240-019-01728-x

Paux, E., Sourdille, P., Mackay, I., & Feuillet, C. (2012). Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnology Advances, 30(5), 1071–1088. https://doi.org/10.1016/j.biotechadv.2011.09.015 DOI: https://doi.org/10.1016/j.biotechadv.2011.09.015

Poland, J., Endelman, J., Dawson, J., Rutkoski, J., Wu, S., Manes, Y., Dreisigacker, S., Crossa, J., Sánchez‐Villeda, H., Sorrells, M., & Jannink, J. (2012). Genomic Selection in Wheat Breeding using Genotyping‐by‐Sequencing. The Plant Genome, 5(3). https://doi.org/10.3835/plantgenome2012.06.0006 DOI: https://doi.org/10.3835/plantgenome2012.06.0006

Qiao, C. G., Basford, K. E., DeLacy, I. H., & Cooper, M. (2000). Evaluation of experimental designs and spatial analyses in wheat breeding trials. Theoretical and Applied Genetics, 100(1), 9–16. https://doi.org/10.1007/s001220050002 DOI: https://doi.org/10.1007/s001220050002

Rajaram, S., Borlaug, N. E., & Ginkel, M. Van. (2009). CIMMYT international wheat breeding. Program, January 2002, 1–24.

Randhawa, H. S., Asif, M., Pozniak, C., Clarke, J. M., Graf, R. J., Fox, S. L., Humphreys, D. G., Knox, R. E., Depauw, R. M., Singh, A. K., Cuthbert, R. D., Hucl, P., & Spaner, D. (2013). Application of molecular markers to wheat breeding in Canada. Plant Breeding, 132(5), 458–471. https://doi.org/10.1111/pbr.12057 DOI: https://doi.org/10.1111/pbr.12057

Reif, J. C., Zhang, P., Dreisigacker, S., Warburton, M. L., Van Ginkel, M., Hoisington, D., Bohn, M., & Melchinger, A. E. (2005). Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 110(5), 859–864. https://doi.org/10.1007/s00122-004-1881-8 DOI: https://doi.org/10.1007/s00122-004-1881-8

Reynolds, M., Bonnett, D., Chapman, S. C., Furbank, R. T., Manés, Y., Mather, D. E., & Parry, M. A. J. (2011). Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 62(2), 439–452. https://doi.org/10.1093/jxb/erq311 DOI: https://doi.org/10.1093/jxb/erq311

Shamaya, N. J., Shavrukov, Y., Langridge, P., Roy, S. J., & Tester, M. (2017). Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biology, 17(1), 1–8. https://doi.org/10.1186/s12870-017-1164-6 DOI: https://doi.org/10.1186/s12870-017-1164-6

Tiwari, V., Matin, M. A., Qamer, F. M., Ellenburg, W. L., & Hanan, N. P. (2020). Wheat Area Mapping in Afghanistan Based on Optical and SAR Time-Series Images in Google Earth Engine Cloud Environment. 8(June). https://doi.org/10.3389/fenvs.2020.00077 DOI: https://doi.org/10.3389/fenvs.2020.00077

Vats, S. (2018). Biotic and abiotic stress tolerance in plants. Biotic and Abiotic Stress Tolerance in Plants, 1–367. https://doi.org/10.1007/978-981-10-9029-5 DOI: https://doi.org/10.1007/978-981-10-9029-5

Water and Agricultural Sustainability Strategies. (2010). In Water and Agricultural Sustainability Strategies. https://doi.org/10.1201/b10533 DOI: https://doi.org/10.1201/b10533

Zhang, K., Mason, A. S., Farooq, M. A., Islam, F., Quezada-Martinez, D., Hu, D., Yang, S., Zou, J., & Zhou, W. (2021). Challenges and prospects for a potential allohexaploid Brassica crop. Theoretical and Applied Genetics, 134(9), 2711–2726. https://doi.org/10.1007/s00122-021-03845-8 DOI: https://doi.org/10.1007/s00122-021-03845-8

Zhou, J., Tan, C., Cui, C., Ge, X., & Li, Z. (2016). Distinct subgenome stabilities in synthesized Brassica allohexaploids. Theoretical and Applied Genetics, 129(7), 1257–1271. https://doi.org/10.1007/s00122-016-2701-7 DOI: https://doi.org/10.1007/s00122-016-2701-7

Downloads

Published

2024-11-23

How to Cite

Danishiar, S. Q. . (2024). Development Approaches of Wheat (Triticum Aestivum) Cultivars for Achieving Food Security in Afghanistan. Journal of Natural Science Review, 2(Special.Issue), 276–290. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.130