In-ovo Delivery of Lipopolysaccharide Induces Protective Antiviral Responses Against Infectious Laryngotracheitis Virus Encountered Post-Hatch

Authors

  • Mohamed Sarjoon Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, Canada
  • M Abdul-Cader Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, Canada
  • Ana Perez Contreras Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, Canada
  • Mohamed Faizal Abdul-Careem Health Research Innovation Center 2C53, Faculty of Veterinary Medicine, University of Calgary, Canada

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.159

Keywords:

Antiviral, Infectious laryngotracheitis virus, In-ovo, TLR4, Toll-like receptor, Lipopolysaccharide

Abstract

Infectious laryngotracheitis virus (ILTV) is an avian respiratory virus that causes significant economic losses to the worldwide poultry industry. To address the limitations of current control measures against ILTV infections, it is crucial to develop novel measures that can complement or replace the existing control measures. The in-depth understanding of toll-like receptor (TLR)ligand interaction and activation mechanisms has facilitated the development of more specific synthetic ligands with therapeutic potentials capable of enhancing host immune responses against various infections. As a key ligand for activating the TLR4 signaling pathway, lipopolysaccharide (LPS) triggers immune responses against numerous pathogens. Previous research has demonstrated that the intramuscular injection of LPS in chickens can induce antiviral responses against low pathogenic avian influenza virus (AIV) infections. This study evaluated the potential of in-ovo delivery of LPS to stimulate innate antiviral responses against ILTV infection in post-hatch chickens. The results showed that in-ovo delivery of LPS at embryo day (ED)-18 significantly reduced mortality, clinical symptoms, and virus excretion in chickens infected with ILTV at day 1 post-hatch, which was associated with the expansion of the macrophage population in the lungs. This study provides a detailed understanding of the mechanisms underlying the antiviral responses elicited against ILTV infection following in-ovo delivery of LPS in chickens.

Downloads

Download data is not yet available.

References

Abdul-Cader, M. S., Ahmed-Hassan, H., Amarasinghe, A., Nagy, E., Sharif, S., & Abdul-Careem, M. F. (2017). Toll-like receptor (TLR)21 signalling-mediated antiviral response against avian influenza virus infection correlates with macrophage recruitment and nitric oxide production. J Gen Virol, 98(6), 1209-1223. doi:10.1099/jgv.0.000787 DOI: https://doi.org/10.1099/jgv.0.000787

Abdul-Cader, M. S., Amarasinghe, A., & Abdul-Careem, M. F. (2016). Activation of toll-like receptor signaling pathways leading to nitric oxide-mediated antiviral responses. Arch Virol, 161(8), 2075-2086. doi:10.1007/s00705-016-2904-x DOI: https://doi.org/10.1007/s00705-016-2904-x

Abdul-Cader, M. S., Amarasinghe, A., Palomino-Tapia, V., Ahmed-Hassan, H., Bakhtawar, K., Nagy, E., . . . Abdul-Careem, M. F. (2017). In ovo CpG DNA delivery increases innate and adaptive immune cells in respiratory, gastrointestinal and immune systems post-hatch correlating with lower infectious laryngotracheitis virus infection. PLoS One.

Abdul-Cader, M. S., Amarasinghe, A., Palomino-Tapia, V., Ahmed-Hassan, H., Bakhtawar, K., Nagy, E., . . . Abdul-Careem, M. F. (2018). In ovo CpG DNA delivery increases innate and adaptive immune cells in respiratory, gastrointestinal and immune systems post-hatch correlating with lower infectious laryngotracheitis virus infection. PLoS One, 13(3), e0193964. doi:10.1371/journal.pone.0193964 DOI: https://doi.org/10.1371/journal.pone.0193964

Abdul-Cader, M. S., De Silva Senapathi, U., Ahmed-Hassan, H., Sharif, S., & Abdul-Careem, M. F. (2019). Single stranded (ss)RNA-mediated antiviral response against infectious laryngotracheitis virus infection. BMC Microbiol, 19(1), 34. doi:10.1186/s12866-019-1398-6 DOI: https://doi.org/10.1186/s12866-019-1398-6

Abdul-Cader, M. S., De Silva Senapathi, U., Nagy, E., Sharif, S., & Abdul-Careem, M. F. (2018). Antiviral response elicited against avian influenza virus infection following activation of toll-like receptor (TLR)7 signaling pathway is attributable to interleukin (IL)-1beta production. BMC Res Notes, 11(1), 859. doi:10.1186/s13104-018-3975-4 DOI: https://doi.org/10.1186/s13104-018-3975-4

Abdul-Cader, M. S., Palomino-Tapia, V., Amarasinghe, A., Ahmed-Hassan, H., De Silva Senapathi, U., & Abdul-Careem, M. F. (2017). Hatchery Vaccination Against Poultry Viral Diseases: Potential Mechanisms and Limitations. Viral Immunol, 1-11. doi:10.1089/vim.2017.0050 DOI: https://doi.org/10.1089/vim.2017.0050

Ahmed-Hassan, H., Abdul-Cader, M. S., Ahmed Sabry, M., Hamza, E., Sharif, S., Nagy, E., & Abdul-Careem, M. F. (2018). Double-Stranded Ribonucleic Acid-Mediated Antiviral Response Against Low Pathogenic Avian Influenza Virus Infection. Viral Immunol, 31(6), 433-446. doi:10.1089/vim.2017.0142 DOI: https://doi.org/10.1089/vim.2017.0142

Ahmed-Hassan, H., Abdul-Cader, M. S., Maha, A. S., Eman, H., Nagy, E., Sharif, S., & Abdul-Careem, M. F. (2017). Double stranded RNA-mediated antiviral response against low pathogenic avian influenza virus infection attributable to type 1 interferon activity and expression of toll-like receptor 3. Viral Immunol.

Ahmed-Hassan, H., Abdul-Cader, M. S., Sabry, M. A., Hamza, E., & Abdul-Careem, M. F. (2018). Toll-like receptor (TLR)4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type I interferon production and antiviral response. Virus Res. doi:10.1016/j.virusres.2018.08.008 DOI: https://doi.org/10.1016/j.virusres.2018.08.008

Akira, S. (2003). Toll-like receptor signaling. J Biol Chem, 278(40), 38105-38108. doi:10.1074/jbc.R300028200 DOI: https://doi.org/10.1074/jbc.R300028200

Alkie, T. N., Taha-Abdelaziz, K., Barjesteh, N., Bavananthasivam, J., Hodgins, D. C., & Sharif, S. (2017). Characterization of Innate Responses Induced by PLGA Encapsulated- and Soluble TLR Ligands In Vitro and In Vivo in Chickens. PLoS One, 12(1), e0169154. doi:10.1371/journal.pone.0169154 DOI: https://doi.org/10.1371/journal.pone.0169154

Amarasinghe, A., Abdul-Cader, M. S., Almatrouk, Z., van der Meer, F., Cork, S. C., Gomis, S., & Abdul-Careem, M. F. (2017). Induction of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the respiratory tract of chickens following experimental infection with infectious bronchitis corona virus (IBV). Arch Virol. DOI: https://doi.org/10.1016/j.vetmic.2018.01.001

Annamalai, A., Ramakrishnan, S., Sachan, S., Kumar, B. S. A., Sharma, B. K., Kumar, V., . . . Krishnaswamy, N. (2016). Prophylactic potential of resiquimod against very virulent infectious bursal disease virus (vvIBDV) challenge in the chicken. Vet Microbiol, 187, 21-30. doi:10.1016/j.vetmic.2016.03.005 DOI: https://doi.org/10.1016/j.vetmic.2016.03.005

Arpaia, N., & Barton, G. M. (2011). Toll-like receptors: key players in antiviral immunity. Curr Opin Virol, 1(6), 447-454. doi:10.1016/j.coviro.2011.10.006 DOI: https://doi.org/10.1016/j.coviro.2011.10.006

Ashkar, A. A., Mossman, K. L., Coombes, B. K., Gyles, C. L., & Mackenzie, R. (2008). FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog, 4(12), e1000233. doi:10.1371/journal.ppat.1000233 DOI: https://doi.org/10.1371/journal.ppat.1000233

Barjesteh, N., Brisbin, J. T., Behboudi, S., Nagy, E., & Sharif, S. (2015). Induction of antiviral responses against avian influenza virus in embryonated chicken eggs with toll-like receptor ligands. Viral Immunol, 28(4), 192-200. doi:10.1089/vim.2014.0145 DOI: https://doi.org/10.1089/vim.2014.0145

Bavananthasivam, J., Alkie, T. N., Matsuyama-Kato, A., Hodgins, D. C., & Sharif, S. (2017). Characterization of innate responses induced by in ovo administration of encapsulated and free forms of ligands of Toll-like receptor 4 and 21 in chicken embryos. Res Vet Sci. doi:10.1016/j.rvsc.2017.10.002 DOI: https://doi.org/10.1016/j.rvsc.2017.10.002

Bavananthasivam, J., Kulkarni, R. R., Read, L., & Sharif, S. (2018). Reduction of Marek's Disease Virus Infection by Toll-Like Receptor Ligands in Chicken Embryo Fibroblast Cells. Viral Immunol, 31(5), 389-396. doi:10.1089/vim.2017.0195 DOI: https://doi.org/10.1089/vim.2017.0195

Berbert, L. R., Gonzalez, F. B., Villar, S. R., Vigliano, C., Lioi, S., Beloscar, J., . . . Perez, A. R. (2021). Enhanced Migratory Capacity of T Lymphocytes in Severe Chagasic Patients Is Correlated With VLA-4 and TNF-alpha Expression. Front Cell Infect Microbiol, 11, 713150. doi:10.3389/fcimb.2021.713150 DOI: https://doi.org/10.3389/fcimb.2021.713150

Beutler, B. (2000). Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol, 12(1), 20-26. DOI: https://doi.org/10.1016/S0952-7915(99)00046-1

Bieback, K., Lien, E., Klagge, I. M., Avota, E., Schneider-Schaulies, J., Duprex, W. P., . . . Schneider-Schaulies, S. (2002). Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol, 76(17), 8729-8736. DOI: https://doi.org/10.1128/JVI.76.17.8729-8736.2002

Cheng, J., Sun, Y., Zhang, X., Zhang, F., Zhang, S., Yu, S., . . . Ding, C. (2014). Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Arch Virol, 159(11), 2937-2948. doi:10.1007/s00705-014-2148-6 DOI: https://doi.org/10.1007/s00705-014-2148-6

De Silva Senapathi, U., Abdul-Cader, M. S., Amarasinghe, A., van Marle, G., Czub, M., Gomis, S., & Abdul-Careem, M. F. (2018). The In Ovo Delivery of CpG Oligonucleotides Protects against Infectious Bronchitis with the Recruitment of Immune Cells into the Respiratory Tract of Chickens. Viruses, 10(11). doi:10.3390/v10110635 DOI: https://doi.org/10.3390/v10110635

De Silva Senapathi, U., Aboelkhair, M., Puro, K., Ali, M., Amarasinghe, A., Abdul-Cader, M. S., . . . Abdul-Careem, M. F. (2020). In Ovo Delivered Toll-Like Receptor 7 Ligand, Resiquimod Enhances Host Responses against Infectious Bronchitis Corona Virus (IBV) Infection. Vaccines (Basel), 8(2). doi:10.3390/vaccines8020186 DOI: https://doi.org/10.3390/vaccines8020186

Fujimoto, I., Pan, J., Takizawa, T., & Nakanishi, Y. (2000). Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol, 74(7), 3399-3403. DOI: https://doi.org/10.1128/JVI.74.7.3399-3403.2000

Galiana-Arnoux, D., & Imler, J. L. (2006). Toll-like receptors and innate antiviral immunity. Tissue Antigens, 67(4), 267-276. doi:10.1111/j.1399-0039.2006.00583.x DOI: https://doi.org/10.1111/j.1399-0039.2006.00583.x

Ge, Y., Mansell, A., Ussher, J. E., Brooks, A. E., Manning, K., Wang, C. J., & Taylor, J. A. (2013). Rotavirus NSP4 Triggers Secretion of Proinflammatory Cytokines from Macrophages via Toll-Like Receptor 2. J Virol, 87(20), 11160-11167. doi:10.1128/JVI.03099-12 DOI: https://doi.org/10.1128/JVI.03099-12

Guo, Z. Y., Giambrone, J. J., Wu, H., & Dormitorio, T. (2003). Safety and efficacy of an experimental reovirus vaccine for in ovo administration. Avian Dis, 47(4), 1423-1428. doi:10.1637/7009 DOI: https://doi.org/10.1637/7009

Haasbach, E., Droebner, K., Vogel, A. B., & Planz, O. (2011). Low-dose interferon Type I treatment is effective against H5N1 and swine-origin H1N1 influenza A viruses in vitro and in vivo. J Interferon Cytokine Res, 31(6), 515-525. doi:10.1089/jir.2010.0071 DOI: https://doi.org/10.1089/jir.2010.0071

Haddadi, S., Kim, D. S., Jasmine, H., van der Meer, F., Czub, M., & Abdul-Careem, M. F. (2013). Induction of Toll-like receptor 4 signaling in avian macrophages inhibits infectious laryngotracheitis virus replication in a nitric oxide dependent way. Vet Immunol Immunopathol, 155(4), 270-275. doi:10.1016/j.vetimm.2013.08.005 DOI: https://doi.org/10.1016/j.vetimm.2013.08.005

Haddadi, S., Thapa, S., Kameka, A. M., Hui, J., Czub, M., Nagy, E., . . . Abdul-Careem, M. F. (2015). Toll-like receptor 2 ligand, lipoteichoic acid is inhibitory against infectious laryngotracheitis virus infection in vitro and in vivo. Dev Comp Immunol, 48(1), 22-32. doi:10.1016/j.dci.2014.08.011 DOI: https://doi.org/10.1016/j.dci.2014.08.011

Haynes, L. M., Moore, D. D., Kurt-Jones, E. A., Finberg, R. W., Anderson, L. J., & Tripp, R. A. (2001). Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol, 75(22), 10730-10737. doi:10.1128/JVI.75.22.10730-10737.2001 DOI: https://doi.org/10.1128/JVI.75.22.10730-10737.2001

He, H., Genovese, K. J., Nisbet, D. J., & Kogut, M. H. (2006). Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol, 43(7), 783-789. doi:10.1016/j.molimm.2005.07.002 DOI: https://doi.org/10.1016/j.molimm.2005.07.002

Ho, P. P., Fontoura, P., Ruiz, P. J., Steinman, L., & Garren, H. (2003). An Immunomodulatory GpG Oligonucleotide for the Treatment of Autoimmunity via the Innate and Adaptive Immune Systems. The Journal of Immunology, 171(9), 4920-4926. doi:10.4049/jimmunol.171.9.4920 DOI: https://doi.org/10.4049/jimmunol.171.9.4920

Hung, L. H., Tsai, P. C., Wang, C. H., Li, S. L., Huang, C. C., Lien, Y. Y., & Chaung, H. C. (2011). Immunoadjuvant efficacy of plasmids with multiple copies of a CpG motif coadministrated with avian influenza vaccine in chickens. Vaccine, 29(29-30), 4668-4675. doi:10.1016/j.vaccine.2011.04.104 DOI: https://doi.org/10.1016/j.vaccine.2011.04.104

Jain, V. V., Kitagaki, K., Businga, T., Hussain, I., George, C., O'Shaughnessy, P., & Kline, J. N. (2002). CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. J Allergy Clin Immunol, 110(6), 867-872. DOI: https://doi.org/10.1067/mai.2002.129371

Jarosinski, K. W., Jia, W., Sekellick, M. J., Marcus, P. I., & Schat, K. A. (2001). Cellular responses in chickens treated with IFN-alpha orally or inoculated with recombinant Marek's disease virus expressing IFN-alpha. J Interferon Cytokine Res, 21(5), 287-296. doi:10.1089/107999001300177475 DOI: https://doi.org/10.1089/107999001300177475

Kandimalla, E. R., Bhagat, L., Zhu, F. G., Yu, D., Cong, Y. P., Wang, D., . . . Agrawal, S. (2003). A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif. Proc Natl Acad Sci U S A, 100(24), 14303-14308. doi:10.1073/pnas.2335947100 DOI: https://doi.org/10.1073/pnas.2335947100

Kannaki, T. R., Priyanka, E., & Reddy, M. R. (2019). Co-administration of toll-like receptor (TLR)-3 and 4 ligands augments immune response to Newcastle disease virus (NDV) vaccine in chicken. Vet Res Commun, 43(4), 225-230. doi:10.1007/s11259-019-09763-x DOI: https://doi.org/10.1007/s11259-019-09763-x

Kitagaki, K., Jain, V. V., Businga, T. R., Hussain, I., & Kline, J. N. (2002). Immunomodulatory Effects of CpG Oligodeoxynucleotides on Established Th2 Responses. Clinical and Vaccine Immunology, 9(6), 1260-1269. doi:10.1128/cdli.9.6.1260-1269.2002 DOI: https://doi.org/10.1128/CDLI.9.6.1260-1269.2002

Krieg, A. M. (2008). Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene, 27(2), 161-167. doi:10.1038/sj.onc.1210911 DOI: https://doi.org/10.1038/sj.onc.1210911

Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., . . . Finberg, R. W. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol, 1(5), 398-401. doi:10.1038/80833 DOI: https://doi.org/10.1038/80833

Lavric, M., Bencina, D., Kothlow, S., Kaspers, B., & Narat, M. (2007). Mycoplasma synoviae lipoprotein MSPB, the N-terminal part of VlhA haemagglutinin, induces secretion of nitric oxide, IL-6 and IL-1beta in chicken macrophages. Vet Microbiol, 121(3-4), 278-287. doi:10.1016/j.vetmic.2006.12.005 DOI: https://doi.org/10.1016/j.vetmic.2006.12.005

Lester, S. N., & Li, K. (2014). Toll-like receptors in antiviral innate immunity. J Mol Biol, 426(6), 1246-1264. doi:10.1016/j.jmb.2013.11.024 DOI: https://doi.org/10.1016/j.jmb.2013.11.024

Liang, Z., Wu, S., Li, Y., He, L., Wu, M., Jiang, L., . . . Huang, X. (2011). Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-beta in cultured hepatoma cells. PLoS One, 6(8), e23346. doi:10.1371/journal.pone.0023346 DOI: https://doi.org/10.1371/journal.pone.0023346

Matoo, J. J., Bashir, K., Kumar, A., Krishnaswamy, N., Dey, S., Chellappa, M. M., & Ramakrishnan, S. (2018). Resiquimod enhances mucosal and systemic immunity against avian infectious bronchitis virus vaccine in the chicken. Microb Pathog, 119, 119-124. doi:10.1016/j.micpath.2018.04.012 DOI: https://doi.org/10.1016/j.micpath.2018.04.012

Medzhitov, R., & Janeway, C. A., Jr. (1997). Innate immunity: the virtues of a nonclonal system of recognition. Cell, 91(3), 295-298. DOI: https://doi.org/10.1016/S0092-8674(00)80412-2

Meng, S., Yang, L., Xu, C., Qin, Z., Xu, H., Wang, Y., . . . Liu, W. (2011). Recombinant chicken interferon-alpha inhibits H9N2 avian influenza virus replication in vivo by oral administration. J Interferon Cytokine Res, 31(7), 533-538. doi:10.1089/jir.2010.0123 DOI: https://doi.org/10.1089/jir.2010.0123

Meylan, E., Tschopp, J., & Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature, 442(7098), 39-44. doi:10.1038/nature04946 DOI: https://doi.org/10.1038/nature04946

Mo, C. W., Cao, Y. C., & Lim, B. L. (2001). The in vivo and in vitro effects of chicken interferon alpha on infectious bursal disease virus and Newcastle disease virus infection. Avian Dis, 45(2), 389-399. DOI: https://doi.org/10.2307/1592978

Mogensen, T. H., & Paludan, S. R. (2001). Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev, 65(1), 131-150. doi:10.1128/MMBR.65.1.131-150.2001 DOI: https://doi.org/10.1128/MMBR.65.1.131-150.2001

Mogensen, T. H., & Paludan, S. R. (2005). Reading the viral signature by Toll-like receptors and other pattern recognition receptors. J Mol Med (Berl), 83(3), 180-192. doi:10.1007/s00109-004-0620-6 DOI: https://doi.org/10.1007/s00109-004-0620-6

Morris, M. A., & Ley, K. (2004). Trafficking of natural killer cells. Curr Mol Med, 4(4), 431-438. doi:10.2174/1566524043360609 DOI: https://doi.org/10.2174/1566524043360609

Pei, J., Sekellick, M. J., Marcus, P. I., Choi, I. S., & Collisson, E. W. (2001). Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J Interferon Cytokine Res, 21(12), 1071-1077. doi:10.1089/107999001317205204 DOI: https://doi.org/10.1089/107999001317205204

Pilaro, A. M., Taub, D. D., McCormick, K. L., Williams, H. M., Sayers, T. J., Fogler, W. E., & Wiltrout, R. H. (1994). TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J Immunol, 153(1), 333-342. DOI: https://doi.org/10.4049/jimmunol.153.1.333

Presicce, P., Senthamaraikannan, P., Alvarez, M., Rueda, C. M., Cappelletti, M., Miller, L. A., . . . Kallapur, S. G. (2015). Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque. Biol Reprod, 92(2), 56. doi:10.1095/biolreprod.114.124420 DOI: https://doi.org/10.1095/biolreprod.114.124420

Rider, P., Carmi, Y., Guttman, O., Braiman, A., Cohen, I., Voronov, E., . . . Apte, R. N. (2011). IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol, 187(9), 4835-4843. doi:10.4049/jimmunol.1102048 DOI: https://doi.org/10.4049/jimmunol.1102048

Setta, A., Barrow, P. A., Kaiser, P., & Jones, M. A. (2012). Immune dynamics following infection of avian macrophages and epithelial cells with typhoidal and non-typhoidal Salmonella enterica serovars; bacterial invasion and persistence, nitric oxide and oxygen production, differential host gene expression, NF-kappaB signalling and cell cytotoxicity. Vet Immunol Immunopathol, 146(3-4), 212-224. doi:10.1016/j.vetimm.2012.03.008 DOI: https://doi.org/10.1016/j.vetimm.2012.03.008

Shinya, K., Ito, M., Makino, A., Tanaka, M., Miyake, K., Eisfeld, A. J., & Kawaoka, Y. (2012). The TLR4-TRIF pathway protects against H5N1 influenza virus infection. J Virol, 86(1), 19-24. doi:10.1128/JVI.06168-11 DOI: https://doi.org/10.1128/JVI.06168-11

St Paul, M., Mallick, A. I., Read, L. R., Villanueva, A. I., Parvizi, P., Abdul-Careem, M. F., . . . Sharif, S. (2012). Prophylactic treatment with Toll-like receptor ligands enhances host immunity to avian influenza virus in chickens. Vaccine, 30(30), 4524-4531. doi:10.1016/j.vaccine.2012.04.033 DOI: https://doi.org/10.1016/j.vaccine.2012.04.033

Thapa, S., Abdul-Cader, M. S., Murugananthan, K., Nagy, E., Sharif, S., Czub, M., & Abdul-Careem, M. F. (2015). In ovo delivery of CpG DNA reduces avian infectious laryngotracheitis virus induced mortality and morbidity. Viruses, 7(4), 1832-1852. doi:10.3390/v7041832 DOI: https://doi.org/10.3390/v7041832

Thapa, S., Nagy, E., & Abdul-Careem, M. F. (2015). In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection. Vet Immunol Immunopathol, 164(3-4), 170-178. doi:10.1016/j.vetimm.2015.02.006 DOI: https://doi.org/10.1016/j.vetimm.2015.02.006

Unanue, E. R. (1984). Antigen-presenting function of the macrophage. Annu Rev Immunol, 2, 395-428. doi:10.1146/annurev.iy.02.040184.002143 DOI: https://doi.org/10.1146/annurev.iy.02.040184.002143

Vollmer, J., & Krieg, A. M. (2009). Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev, 61(3), 195-204. doi:10.1016/j.addr.2008.12.008 DOI: https://doi.org/10.1016/j.addr.2008.12.008

Wakenell, P. S., Bryan, T., Schaeffer, J., Avakian, A., Williams, C., & Whitfill, C. (2002). Effect of in ovo vaccine delivery route on herpesvirus of turkeys/SB-1 efficacy and viremia. Avian Dis, 46(2), 274-280. DOI: https://doi.org/10.1637/0005-2086(2002)046[0274:EOIOVD]2.0.CO;2

Wang, X., Lu, J., Mao, Y., Zhao, Q., Chen, C., Han, J., . . . Wang, S. (2022). A mutually beneficial macrophages-mediated delivery system realizing photo/immune therapy. J Control Release, 347, 14-26. doi:10.1016/j.jconrel.2022.04.038 DOI: https://doi.org/10.1016/j.jconrel.2022.04.038

Downloads

Published

2024-11-23

How to Cite

Sarjoon, M., Abdul-Cader, M., Contreras, A. P., & Abdul-Careem, M. F. (2024). In-ovo Delivery of Lipopolysaccharide Induces Protective Antiviral Responses Against Infectious Laryngotracheitis Virus Encountered Post-Hatch. Journal of Natural Science Review, 2(Special.Issue), 565–580. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.159