Drones in Agriculture: Real-World Applications and Impactful Case Studies

Authors

  • Hassan Mahasneh University of Doha for Science and Technology, Doha, Qatar

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.164

Keywords:

Agriculture, Drone, Sensor, Water management, Uncrewed aerial vehicle

Abstract

Uncrewed aircraft, commonly known as drones, are deployed manually by a ground-based pilot through remote control or autonomously through pre-programmed flight sequences. This paper explores the multifaceted applications of drone technology within agriculture. The scope of this technology extends to various crucial facets, including managing water resources in agricultural systems, detecting water stress, identifying diseases and pests, estimating crop yield and maturity, detecting weed flora, workforce monitoring, livestock maintenance, and logistical concerns. Integrating drone technology in agriculture yields notable benefits, enhancing operational efficiency, task precision, and cost-effectiveness by reducing inputs such as land, water, seeds, agro-chemicals, and manual labor.

Downloads

Download data is not yet available.

References

Aguilar, A. L., Flores, H., Crespo, G., Marín, M. I., Campos, I., & Calera, A. (2018). Performance assessment of MOD16 in evapotranspiration evaluation in Northwestern Mexico. Water, 10(7), 901. https://doi.org/10.3390/w10070901 DOI: https://doi.org/10.3390/w10070901

Ahirwar, S., Swarnkar, R., Bhukya, S., & Namwade, G. (2019). Application of drone in agriculture. International Journal of Current Microbiology and Applied Sciences, 8(1), 2500–2505. DOI: https://doi.org/10.20546/ijcmas.2019.801.264

Bujang, A. S., & Bakar, B. H. A. (2019). Precision agriculture in Malaysia. In Proceedings of International Workshop on ICTs for Precision Agriculture, 6–8 August 2019 (pp. 91–104).

Călina, J., Calina, A., Miluţ, M., Croitoru, A., Stan, I., & Buzatu, C. (2020). Use of drones in cadastral works and precision works in silviculture and agriculture. Publisher NARDI Fundulea, România, 37, 273–284. DOI: https://doi.org/10.59665/rar3730

Celen, I. H., Onler, E., & Ozyurt, H. B. (2020). Drone technology in precision agriculture. In H. İ. Kurt (Ed.), Academic Studies in Engineering Sciences (pp. 121–149).

Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019). A review on the use of drones for precision agriculture. In IOP Conference Series: Earth and Environmental Science, 275(1), 012022. IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/275/1/012022

Dileep, M. R., Navaneeth, A. V., Ullagaddi, S., & Danti, A. (2020). A study and analysis on various types of agricultural drones and its applications. In 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN) (pp. 181–185). IEEE. DOI: https://doi.org/10.1109/ICRCICN50933.2020.9296195

Erena, M., Atenza, J. F., García-Galiano, S., Domínguez, J. A., & Bernabe, J. M. (2019). Use of drones for the topo-bathymetric monitoring of the reservoirs of the Segura River Basin. Water, 11(3), 445. https://doi.org/10.3390/w11030445 DOI: https://doi.org/10.3390/w11030445

Filho, I. F. H., Heldens, W. B., Kong, Z., & de Lange, E. S. (2020). Drones: Innovative technology for use in precision pest management. Journal of Economic Entomology, 113(1), 1–25. DOI: https://doi.org/10.1093/jee/toz268

Gao, A., Wu, S., Wang, F., Wu, X., Xu, P., Yu, L., & Zhu, S. (2019). A newly developed unmanned aerial vehicle (UAV) imagery-based technology for field measurement of water level. Water, 11(1), 124. https://doi.org/10.3390/w11010124 DOI: https://doi.org/10.3390/w11010124

Ghazali, M. H. M., Azmin, A., & Rahiman, W. (2022). Drone implementation in precision agriculture: A survey. International Journal of Emerging Technology and Advanced Engineering, 12(4), 67–77. DOI: https://doi.org/10.46338/ijetae0422_10

Kolhe, P., & Munde, T. N. (2019). Use of drone for efficient water management: A case study. In 3rd World Irrigation Forum (WIF3), 1–7 September 2019, Bali, Indonesia.

Koparan, C., Koc, A. B., Privette, C. V., & Sawyer, C. B. (2018). In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water, 10(3), 264. https://doi.org/10.3390/w10030264 DOI: https://doi.org/10.3390/w10030264

Kurkute, S. R., Deore, B. D., Kasar, P., Bhamare, M., & Sahane, M. (2018). Drones for smart agriculture: A technical report. International Journal for Research in Applied Science and Engineering Technology, 6(4), 341–346. DOI: https://doi.org/10.22214/ijraset.2018.4061

Kurt, D., & Kinay, A. (2021). Effects of irrigation, nitrogen forms and topping on sun cured tobacco. Industrial Crops and Products, 162, 113276. DOI: https://doi.org/10.1016/j.indcrop.2021.113276

Press Information Bureau. (2021, December 21). Ministry of Agriculture & Farmers Welfare. https://pib.gov.in/PressReleasePage.aspx?PRID=1783937

Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507–518. https://doi.org/10.1080/09720510.2017.1395171 DOI: https://doi.org/10.1080/09720510.2017.1395171

Ram Kumar, R. P., Sanjeeva, P., & Vijay Kumar, B. (2018). Transforming the traditional farming into smart farming using drones. In Proceedings of the Second International Conference on Computational Intelligence and Informatics (pp. 589–598). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-8228-3_54

Ramírez-Cuesta, J. M., Miras-Avalos, J. M., Rubio-Asensio, J. S., & Intrigliolo, D. S. (2018). A novel ArcGIS toolbox for estimating crop water demands by integrating the dual crop coefficient approach with multi-satellite imagery. Water, 11(1), 38. https://doi.org/10.3390/w11010038 DOI: https://doi.org/10.3390/w11010038

Rani, A., Chaudhary, A., Sinha, N., Mohanty, M., & Chaudhary, R. (2019). Drone: The green technology for future agriculture. Harit Dhara, 2(1), 3–6.

Ren, Q., Zhang, R., Cai, W., Sun, X., & Cao, L. (2020). Application and development of new drones in agriculture. In IOP Conference Series: Earth and Environmental Science, 440(5), 052041. IOP Publishing. DOI: https://doi.org/10.1088/1755-1315/440/5/052041

Sabzi, S., Abbaspour-Gilandeh, Y., García-Mateos, G., Ruiz-Canales, A., & Molina-Martínez, J. M. (2018). Segmentation of apples in aerial images under sixteen different lighting conditions using color and texture for optimal irrigation. Water, 10(11), 1634. https://doi.org/10.3390/w10111634 DOI: https://doi.org/10.3390/w10111634

Stehr, N. J. (2015). Drones: The newest technology for precision agriculture. Natural Sciences Education, 44(1), 89–91. DOI: https://doi.org/10.4195/nse2015.04.0772

Verma, A., Singh, M., Parmar, R. P., & Bhullar, K. S. (2022). Feasibility study on hexacopter UAV-based sprayer for application of environment-friendly biopesticide in guava orchard. Journal of Environmental Biology, 43(1), 97–104. DOI: https://doi.org/10.22438/jeb/43/1/MRN-1912

Veroustraete, F. (2015). The rise of the drones in agriculture. EC Agriculture, 2(2), 325–327.

Downloads

Published

2024-11-23

How to Cite

Mahasneh, H. . (2024). Drones in Agriculture: Real-World Applications and Impactful Case Studies. Journal of Natural Science Review, 2(Special.Issue), 643–656. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.164