Management of Root-Knot Nematodes (Meloidogyne Spp.) in Cucumber Under Protected Cultivation System

Authors

  • Hekmatullah Nimgarri Department of Plant Protection, Faculty of Plant Sciences, Afghanistan National Agricultural Sciences and
  • Rahmatullah Nazir Department of Agronomy, Faculty of Plant Sciences, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar, Afghanistan
  • Karamatullah Fazil Department of Agronomy, Faculty of Plant Sciences, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar, Afghanistan
  • Mirwais Yahyazai Center of Basic Sciences, Mathematics department, Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.141

Keywords:

Meloidogyne, Management, Incidence, Severity, Root-knot nematodes

Abstract

Cucumber (Cucumis sativus L.) is a valued vegetable crop produced on a large scale throughout the year in a protected cultivation system. Its growth, development, and production are best in well-drained, fertile soil with 6.5 to 7.5 pH. Due to minor crop rotation and monoculture in protected structures, they are severely attacked by soil-borne pathogens. Between them, root-knot nematodes (Meloidogyne spp.) are the most intractable root endo-parasites that cause dramatic damage and severe crop yield losses. Environmental conditions of protected structures favor root-knot disease incidence and development. The non-availability of resistant crops, biological agents, and technology limitations are the key obstacles to their control. Therefore, agrochemicals are the only reliable method of root-knot disease management. In the present investigation, available nematicides (abamectin, metham sodium, fluopyram, and phorate 5G) were engaged in randomized block design with four replications at naturally infested farmer polyhouse (626.66 J2/ 200 cc soil) located at Mirwais Mina area of Kandahar city. Data on disease incidence, disease severity, soil nematode population, and fruit yield of cucumber were recorded 45 days after sowing the seed and at the termination of the field. All the data were statically analyzed using SPSS software (v.24.0.0). Among the treatments, metham sodium was found superior on plant and nematode parameters, followed by fluopyram. About 3.23 kg yield/plant loss was recorded caused by root-knot nematodes in protected cultivation systems. Based on findings, rotating fumigant and non-fumigant nematicides could be a reliable management method in a highly infested commercial protected structure.

Downloads

Download data is not yet available.

References

Abad, P., Favery, B., Rosso, M. N., & Castagnone-Sereno, P. (2003). Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4(4), 217–224. https://doi.org/10.1046/j.1364-3703.2003.00170.x DOI: https://doi.org/10.1046/j.1364-3703.2003.00170.x

Ahmad, I., Safiullah., Ahmad, M., Khan, I. A., Ali, R., Abbas, A., Khan, M., and Ali, A. (2015). Incidence of root-knot nematode in winter weeds of tomato in Malakand division-Pakistan. Journal of Entomology and Zoology Studies, 6(3), 385–391.

Ami, S. N., Ghaeib, S., & Shingaly, A. (2018). Disease incidence, identification, and monthly fluctuations in the population density of root-knot nematodes Meloidogyne javanica on cucumber plants in Semel District, Duhok, Kurdistan Region, Iraq . Acta Universitatis Sapientiae, Agriculture and Environment, 10(1), 52–65. https://doi.org/10.2478/ausae-2018-0005 DOI: https://doi.org/10.2478/ausae-2018-0005

Aydinli, G., & Mennan, S. (2016). Identification of root-knot nematodes (Meloidogyne spp.) from greenhouses in the Middle Black Sea Region of Turkey. Turkish Journal of Zoology, 40(5), 675–685. https://doi.org/10.3906/zoo-1508-19 DOI: https://doi.org/10.3906/zoo-1508-19

Bakr, R., & Mahdy, M. (2021). Egyptian Journal of Crop Protection. 17(December 2020), 1–14. DOI: https://doi.org/10.21608/ejcp.2020.205589

Bui, H. X., Gu, M., Riva, G., & Desaeger, J. A. (2022). Research/Investigación Meloidogyne Spp. Infecting Asian Vegetables in Central Florida, Usa. Nematropica, 52(1), 56–63. DOI: https://doi.org/10.32473/edis-in1378-2022

Buttar, H. S., Dhillon, N. K., Kaur, S., Anupam, Kaur, K., & Dagar, H. (2022). Integrated application of amendments and chemicals for the management of root-knot nematode (Meloidogyne incognita) in cucumber (Cucumis sativus). Indian Journal of Agricultural Sciences, 92(11), 1331–1335. https://doi.org/10.56093/ijas.v92i11.123498 DOI: https://doi.org/10.56093/ijas.v92i11.123498

Charabadiyan, F., Jamali, S., Yazdi, A. A., Hadizadeh, M. H., and Eskandari, A. (2022). Weed hosts of root-knot nematode in winter weeds of tomato in Malakand disvision-Pakistan. Journal of Plant Protection Research, 2(52), 230–234. DOI: https://doi.org/10.2478/v10045-012-0036-1

Chen, J., Li, Q. X., & Song, B. (2020). Chemical Nematicides: Recent Research Progress and Outlook. Journal of Agricultural and Food Chemistry, 68(44), 12175–12188. https://doi.org/10.1021/acs.jafc.0c02871 DOI: https://doi.org/10.1021/acs.jafc.0c02871

Christie, J. R. and Perry, V. G. (1951). Removing nematodes from soil. Proceeding of Helminthological Society of Washington, 2(18), 106–108.

Desaeger, J. A., & Csinos, A. S. (2006). Root-knot nematode management in double-cropped plasticulture vegetables. Journal of Nematology, 38(1), 59–67.

Eisenback, J. D., Hirshman, H., Sasser, J. N., and Triantaphyllou, A. C. (1991). A more complete characterization of the four most common Meloidogyne species. Adv. Treatiese Meloidogyne, 1, 95–112.

El-Marzoky, A. M., Abdel-Hafez, S. H., Sayed, S., Salem, H. M., El-Tahan, A. M., & El-Saadony, M. T. (2022). The effect of abamectin seeds treatment on plant growth and the infection of root-knot nematode Meloidogyne incognita (Kofoid and White) chitwood. Saudi Journal of Biological Sciences, 29(2), 970–974. https://doi.org/10.1016/j.sjbs.2021.10.006 DOI: https://doi.org/10.1016/j.sjbs.2021.10.006

Eldeeb, A. M., Farag, A. A. G., Al-Harbi, M. S., Kesba, H., Sayed, S., Elesawy, A. E., Hendawi, M. A., Mostafa, E. M., & Aioub, A. A. A. (2022). Controlling of Meloidgyne incognita (Tylenchida: Heteroderidae) using nematicides, Linum usitatissimum extract and certain organic acids on four peppers cultivars under greenhouse conditions. Saudi Journal of Biological Sciences, 29(5), 3107–3113. https://doi.org/10.1016/j.sjbs.2022.03.018 DOI: https://doi.org/10.1016/j.sjbs.2022.03.018

Elsharkawy, M. M., Al-Askar, A. A., Behiry, S. I., Abdelkhalek, A., Saleem, M. H., Kamran, M., & Derbalah, A. (2022). Resistance induction and nematicidal activity of certain monoterpenes against tomato root-knot caused by Meloidogyne incognita. Frontiers in Plant Science, 13(September), 5–8. https://doi.org/10.3389/fpls.2022.982414 DOI: https://doi.org/10.3389/fpls.2022.982414

Emede, T., & Ehizogie, F. (2018). Effect of inorganic fertilizer and poultry manure in combination with super gro on growth and yield of cucumber ( Cucumis sativus L .). September 2022.

Giannakou, I. O., Sidiropoulos, A., & Prophetou-Athanasiadou, D. (2002). Chemical alternatives to methyl bromide for the control of root-knot nematodes in greenhouses. Pest Management Science, 58(3), 290–296. https://doi.org/10.1002/ps.453 DOI: https://doi.org/10.1002/ps.453

Huang, W. K., Cui, J. K., Liu, S. M., Kong, L. A., Wu, Q. S., Peng, H., He, W. T., Sun, J. H., & Peng, D. L. (2016). Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biological Control, 92, 31–37. https://doi.org/10.1016/j.biocontrol.2015.09.008 DOI: https://doi.org/10.1016/j.biocontrol.2015.09.008

Huang, W. K., Sun, J. H., Cui, J. K., Wang, G. F., Kong, L. A., Peng, H., Chen, S. L., & Peng, D. L. (2014). Efficacy evaluation of fungus Syncephalastrum racemosum and nematicide avermectin against the root-knot nematode Meloidogyne incognita on cucumber. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0089717 DOI: https://doi.org/10.1371/journal.pone.0089717

Ismael, J. H. S., & Mahmood, A. A. (2020). Integrated management of root-knot nematode (Meloidogyne spp.) in cucumber (cucumis sativus l.) and its effect on nematode population density, plant growth and yield in Sulaimani Governorate, Kurdistan, Iraq. Applied Ecology and Environmental Research, 18(3), 4709–4741. https://doi.org/10.15666/aeer/1803_47094741 DOI: https://doi.org/10.15666/aeer/1803_47094741

Jiang, J., Trundle, P., Ren, J., Cheng, Y.-L., Lee, C.-Y., Huang, Y.-L., Buckner, C. A., Lafrenie, R. M., Dénommée, J. A., Caswell, J. M., Want, D. A., Gan, G. G., Leong, Y. C., Bee, P. C., Chin, E., Teh, A. K. H., Picco, S., Villegas, L., Tonelli, F., … García-Díaz, V. (2010). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, 34(8), 57–67. https://doi.org/10.5772/intechopen.1002237 DOI: https://doi.org/10.5772/intechopen.1002237

Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), 946–961. https://doi.org/10.1111/mpp.12057 DOI: https://doi.org/10.1111/mpp.12057

Loubser, J. T., & Deklerk, C. A. (2017). Chemical Control of Root-Knot Nematodes in Established Vineyards. South African Journal of Enology & Viticulture, 6(2), 31–33. https://doi.org/10.21548/6-2-2348 DOI: https://doi.org/10.21548/6-2-2348

Maitra, S., Gaikwad, D. J., and Shankar, T. (2020). Protected cultivation and smart agriculture. In New Delhi publishers.

Maru, A. K., & Patel, B. A. (2020). Management of root-knot nematode ( Meloidogyne incognita ) in cucumber under protected cultivation. 31, 71–73.

Moustafa, A. T., & Security, I. F. (2015). Improving Family Incomes and Livelihoods in Rural Afghanistan through Promotion of Sustainable Production Systems for High Value Crops with Less Water. September. https://doi.org/10.13140/RG.2.1.1315.8883

Nimgarri, H., Khan, M. R., Rahimi, M. H., Yahyazai, M., & Mondal, S. (2023). Root-knot nematodes (Meloidogyne spp.) in cucumber under protected cultivation: incidence, management and avoidable yield loss in Afghanistan. Indian Phytopathology, 76(2), 569–579. https://doi.org/10.1007/s42360-023-00622-z DOI: https://doi.org/10.1007/s42360-023-00622-z

Parmar, H. Y., Shdhakar Khanna Parmar, A. Y., Parmar, Y., & Shdhakar Khanna, A. (2018). Effect of presowing nursery treatments on the plant status and nematode population of tomato. ~ 2202 ~ Journal of Pharmacognosy and Phytochemistry, 7(5).

Patil, J., Kumar, A., & Goel, S. R. (2017). Incidence of Plant-Parasitic Nematodes Associated with Polyhouses under Protected Cultivated in Haryana. 35(September), 1870–1873.

Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X., & Wang, K. (2012). Effect of abamectin on root-knot nematodes and tomato yield. Pest Management Science, 68(6), 853–857. https://doi.org/10.1002/ps.2338 DOI: https://doi.org/10.1002/ps.2338

Sadiq, G. A., Omerkhil, N., Zada, K. A., & Safdary, A. J. (2019). Evaluation of growth and yield performance of five cucumbers (Cucumis sativus L.) genotypes; Case study Kunduz province, Afghanistan. International Journal of Advanced Education and Research, December, 8–9. www.alleducationjournal.com

Singh, N., & Chahar, S. (2021). Isolation and morphological identification of root knot nematode from cucumber roots. October. www.botanyjournals.com

Singh, S. K., Khurma, U. R., & Lockhart, P. J. (2010). Weed Hosts of Root-Knot Nematodes and Their Distribution in Fiji. Weed Technology, 24(4), 607–612. https://doi.org/10.1614/wt-d-09-00071.1 DOI: https://doi.org/10.1614/WT-D-09-00071.1

Thies, J. A., Davis, R. F., Mueller, J. D., Fery, R. L., Langston, D. B., & Miller, G. (2005). Host resistance and metam sodium for managing root-knot nematodes in a pepper-cucumber rotation. HortScience, 40(7), 2080–2082. https://doi.org/10.21273/hortsci.40.7.2080 DOI: https://doi.org/10.21273/HORTSCI.40.7.2080

Torto, B., Cortada, L., Murungi, L. K., Haukeland, S., & Coyne, D. L. (2018). Management of Cyst and Root Knot Nematodes: A Chemical Ecology Perspective. Journal of Agricultural and Food Chemistry, 66(33), 8672–8678. https://doi.org/10.1021/acs.jafc.8b01940 DOI: https://doi.org/10.1021/acs.jafc.8b01940

Tóth, F., Bogdányi, F. T., Petrikovszki, R., Gódor, A., Zalai, M., Bálint, B., Sunder, P., & Myrta, A. (2019). Control of the root-knot nematode meloidogyne incognita and weeds in protected cucumber with dimethyl disulfide (DMDS) over Two crop cycles: The first results in Hungary. Acta Phytopathologica et Entomologica Hungarica, 54(2), 267–278. https://doi.org/10.1556/038.54.2019.026 DOI: https://doi.org/10.1556/038.54.2019.026

Van Bezooijen, J. (2006). Methods and Techniques for Nematology. 1–118.

Yucel, S., Ozarslandan, A., Colak, A., & Ay, T. (2009). Methyl bromide alternatives for controlling fusarium wilt and root knot nematodes in tomatoes in Turkey. Acta Horticulturae, 808(January), 381–385. https://doi.org/10.17660/actahortic.2009.808.63 DOI: https://doi.org/10.17660/ActaHortic.2009.808.63

Zasada, I. A., Halbrendt, J. M., Kokalis-Burelle, N., Lamondia, J., McKenry, M. V., & Noling, J. W. (2010). Managing nematodes without methyl bromide. Annual Review of Phytopathology, 48, 311–328. https://doi.org/10.1146/annurev-phyto-073009-114425 DOI: https://doi.org/10.1146/annurev-phyto-073009-114425

Downloads

Published

2024-11-23

How to Cite

Nimgarri, H., Nazir, R., Fazil , K., & Yahyazai, M. (2024). Management of Root-Knot Nematodes (Meloidogyne Spp.) in Cucumber Under Protected Cultivation System. Journal of Natural Science Review, 2(Special.Issue), 425–435. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.141