A Review of Recent Advances in Laser-Based Medical Imaging Techniques
DOI:
https://doi.org/10.62810/jnsr.v3i4.220Keywords:
Artificial Intelligence (AI), Femtosecond Lasers, Fluorescence Imaging, Laser Imaging, Medical Diagnostics, Photoacoustic ImagingAbstract
This review explores the recent advancements in laser-based medical imaging techniques, highlighting their significant contributions to modern diagnostic practices. Laser technologies, including fluorescence imaging, photoacoustic imaging, and femtosecond lasers, have revolutionized non-invasive medical imaging by offering high-resolution and precise visualization of biological structures and processes. These techniques not only enhance early disease detection, particularly cancers, but also support real-time guidance during surgeries, improving patient outcomes. Furthermore, the integration of artificial intelligence (AI) has further optimized diagnostic accuracy and analysis efficiency. Despite these advancements, challenges such as high equipment costs, the need for specialized training, and a lack of standardized protocols still hinder widespread adoption in clinical settings. This review discusses the ongoing innovations in laser-based imaging, the ethical considerations surrounding AI integration, and the potential for future developments, emphasizing the importance of continued research to maximize the benefits of these technologies for patient care.
Downloads
References
Kieffer, J. C., Krol, A., Jiang, Z., Chamberlain, C. C., Scalzetti, E., & Ichalalene, Z. (2016). Future of laser-based X-ray sources for medical imaging. Applied Physics B, 74(Suppl. 1), s75–s81. https://doi.org/ 10.1007/s00340-002-0870-3. DOI: https://doi.org/10.1007/s00340-002-0870-3
Megbuwawon, A., Singh, M. K., Akinniranye, R. D., Kanu, E. C., & Omenogor, C. E. (2024). Integrating artificial intelligence in medical imaging for precision therapy: The role of AI in segmentation, laser-guided procedures, and protective shielding. World Journal of Advanced Research and Reviews, 23(03), 1078–1096. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2751
https://doi.org/ 10.30574/wjarr.2024.23.3.2751.
Semmler, M., Kniesburges, S., Parchent, J., Jakubaß, B., Zimmermann, M., Bohr, C., ... & Döllinger, M. (2017). Endoscopic laser-based 3D imaging for functional voice diagnostics. Applied Sciences, 7(6), https://doi.org/ 10.3390/app7060600. DOI: https://doi.org/10.3390/app7060600
Sun, X., Dong, T., Bi, Y., Min, M., Shen, W., Xu, Y., & Liu, Y. (2016). Linked color imaging application for improving the endoscopic diagnosis accuracy: A pilot study. Scientific Reports, 6(1), https://doi.org/ 10.1038/srep33473. DOI: https://doi.org/10.1038/srep33473
Van Hese, L., De Vleeschouwer, S., Theys, T., Rex, S., Heeren, R. M., & Cuypers, E. (2022). The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumors. Discover Oncology, 13(1), 123. https://doi.org/ 10.1007/s12672-022-00585-z. DOI: https://doi.org/10.1007/s12672-022-00585-z
Sroka, R., & Lilge, L. (2016). Laser-advanced new methods for diagnostics and therapeutics. Photonics & Lasers in Medicine, 5(1), 1–4.https://doi.org/10.1515/plm-2015-0046. DOI: https://doi.org/10.1515/plm-2015-0046
Geoghegan, S. (2019). Lasers in medical diagnosis and therapy by Stephan Wieneke and Christoph Gerhard.https://doi.org/10.1007/s13246-019-00777. DOI: https://doi.org/10.1007/s13246-019-00777-y
Coda, S., Siersema, P. D., Stamp, G. W., & Thillainayagam, A. V. (2015). Biophotonic endoscopy: A review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endoscopy International Open, 3(05), E380–E392. https://doi.org/10.1055/s-0034-1392513. DOI: https://doi.org/10.1055/s-0034-1392513
Sroka, R., Stepp, H., Hennig, G., Brittenham, G. M., Rühm, A., & Lilge, L. (2015). Medical laser application: Translation into the clinics. Journal of Biomedical Optics, 20(6), 061110.https://doi.org/10.1117/1.JBO.20.6.061110. DOI: https://doi.org/10.1117/1.JBO.20.6.061110
Yun, S. H., & Kwok, S. J. (2017). Light in diagnosis, therapy, and surgery. Nature Biomedical Engineering, 1(1), 8.https://doi.org/10.1038/s41551-016-0008. DOI: https://doi.org/10.1038/s41551-016-0008
Mastropietro, A., Scano, A., & Rivolta, M. W. (2022). Applications of laser-induced fluorescence in medicine. Sensors, 22(8), 2956. https://doi.org/10.3390/s22082956. DOI: https://doi.org/10.3390/s22082956
Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine & Biology, 58(11), R37.https://doi.org/10.1088/0031-9155/58/11/R37. DOI: https://doi.org/10.1088/0031-9155/58/11/R37
Humar, M., & Yun, S. H. (2015). Intracellular microlasers. Nature Photonics, 9 (9), 572. https://doi.org/10.1038/nphoton.2015.129. DOI: https://doi.org/10.1038/nphoton.2015.129
Wang, T., Cheng, X., Xu, H., Meng, Y., Yin, Z., Li, X., & Hang, W. (2019). Perspective on advances in laser-based high-resolution mass spectrometry imaging. Analytical Chemistry, 92(1), 543–553. DOI: https://doi.org/10.1021/acs.analchem.9b04067
Zhang, G., Yang, S., Hu, P., & Deng, H. (2022). Advances and prospects of vision-based 3D shape measurement methods. Machines, 10(2), 124. DOI: https://doi.org/10.3390/machines10020124
Wang, Y. Y., Chen, L. Y., Xu, D. G., Shi, J., Feng, H., & Yao, J. Q. (2019). Advances in terahertz three-dimensional imaging techniques. Chinese Optics, 12(1), 1–18. DOI: https://doi.org/10.3788/co.20191201.0001
Stratakis, E., Ranella, A., Farsari, M., & Fotakis, C. (2009). Laser-based micro/nanoengineering for biological applications. Progress in Quantum Electronics, 33(5), 127–163. DOI: https://doi.org/10.1016/j.pquantelec.2009.06.001
Khonina, S. N., Kazanskiy, N. L., Skidanov, R. V., & Butt, M. A. (2025). Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview. Advanced Materials Technologies, 10(4), 2401028. DOI: https://doi.org/10.1002/admt.202401028
Gao, D., Ding, W., Nieto-Vesperinas, M., Ding, X., Rahman, M., Zhang, T., ... & Qiu, C. W. (2017). Optical manipulation from the microscale to the nanoscale: Fundamentals, advances, and prospects. Light: Science & Applications, 6(9), e17039. DOI: https://doi.org/10.1038/lsa.2017.39
Kut, C., Chaichana, K. L., Xi, J., Raza, S. M., Ye, X., McVeigh, E. R., ... & Li, X. (2015). Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Science Translational Medicine, 7(292), 292ra100. https://doi.org/10.1126/scitranslmed.3010611. DOI: https://doi.org/10.1126/scitranslmed.3010611
Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15(12), 747–756. https://doi.org/10.1038/nrc4015. DOI: https://doi.org/10.1038/nrc4015
Ming, K., Kim, J., Biondi, M. J., Syed, A., Chen, K., Lam, A., ... & Chan, W. C. (2015). Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano, 9(3), 3060–3074. https://doi.org/10.1021/nn5072792. DOI: https://doi.org/10.1021/nn5072792
Pritzker, K. P., & Nieminen, H. J. (2019). Needle biopsy adequacy in the era of precision medicine and value-based health care. Archives of Pathology & Laboratory Medicine, 143(11), 1399–1415.https://doi.org/10.5858/arpa.2018-0463-RA. DOI: https://doi.org/10.5858/arpa.2018-0463-RA
Hollon, T. C., Pandian, B., Adapa, A. R., Urias, E., Save, A. V., Khalsa, S. S. S., ... & Orringer, D. A. (2020). Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nature Medicine, 26(1), 52–58. https://doi.org/10.1038/s41591-019-0715-9. DOI: https://doi.org/10.1038/s41591-019-0715-9
Pogue, B. W. (2023). Perspective on the optics of medical imaging. Journal of Biomedical Optics, 28(12), 121208. DOI: https://doi.org/10.1117/1.JBO.28.12.121208
Boppart, S. A., & Richards-Kortum, R. (2014). Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Science Translational Medicine, 6(253), 253rv2. DOI: https://doi.org/10.1126/scitranslmed.3009725
Guida, S., Arginelli, F., Farnetani, F., Ciardo, S., Bertoni, L., Manfredini, M., ... & Pellacani, G. (2021). Clinical applications of in vivo and ex vivo confocal microscopy. Applied Sciences, 11(5), 1979.https://doi.org/10.3390/app11051979. DOI: https://doi.org/10.3390/app11051979
Deegan, A. J., Talebi-Liasi, F., Song, S., Li, Y., Xu, J., Men, S., ... & Wang, R. K. (2018). Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions. Lasers in Surgery and Medicine, 50(3), 183–193. https://doi.org/10.1002/lsm.22788. DOI: https://doi.org/10.1002/lsm.22788
Farooq, A., Alquaity, A. B., Raza, M., Nasir, E. F., Yao, S., & Ren, W. (2022). Laser sensors for energy systems and process industries: Perspectives and directions. Progress in Energy and Combustion Science, 91, 100997. DOI: https://doi.org/10.1016/j.pecs.2022.100997
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sayed Habibullah Hashimi, Noor Mohammad Azizi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







