A Review of Recent Advances in Laser-Based Medical Imaging Techniques

Authors

  • Sayed Habibullah Hashimi Department of Physics and Electronics, Faculty of Physics, Kabul University, Kabul, Afghanistan
  • Noor Mohammad Azizi Department of Nuclear and Atomic Physics, Faculty of Physics, Kabul University, Kabul, Afghanistan

DOI:

https://doi.org/10.62810/jnsr.v3i4.220

Keywords:

Artificial Intelligence (AI), Femtosecond Lasers, Fluorescence Imaging, Laser Imaging, Medical Diagnostics, Photoacoustic Imaging

Abstract

This review explores the recent advancements in laser-based medical imaging techniques, highlighting their significant contributions to modern diagnostic practices. Laser technologies, including fluorescence imaging, photoacoustic imaging, and femtosecond lasers, have revolutionized non-invasive medical imaging by offering high-resolution and precise visualization of biological structures and processes. These techniques not only enhance early disease detection, particularly cancers, but also support real-time guidance during surgeries, improving patient outcomes. Furthermore, the integration of artificial intelligence (AI) has further optimized diagnostic accuracy and analysis efficiency. Despite these advancements, challenges such as high equipment costs, the need for specialized training, and a lack of standardized protocols still hinder widespread adoption in clinical settings. This review discusses the ongoing innovations in laser-based imaging, the ethical considerations surrounding AI integration, and the potential for future developments, emphasizing the importance of continued research to maximize the benefits of these technologies for patient care.

Downloads

Download data is not yet available.

References

Kieffer, J. C., Krol, A., Jiang, Z., Chamberlain, C. C., Scalzetti, E., & Ichalalene, Z. (2016). Future of laser-based X-ray sources for medical imaging. Applied Physics B, 74(Suppl. 1), s75–s81. https://doi.org/ 10.1007/s00340-002-0870-3. DOI: https://doi.org/10.1007/s00340-002-0870-3

Megbuwawon, A., Singh, M. K., Akinniranye, R. D., Kanu, E. C., & Omenogor, C. E. (2024). Integrating artificial intelligence in medical imaging for precision therapy: The role of AI in segmentation, laser-guided procedures, and protective shielding. World Journal of Advanced Research and Reviews, 23(03), 1078–1096. DOI: https://doi.org/10.30574/wjarr.2024.23.3.2751

https://doi.org/ 10.30574/wjarr.2024.23.3.2751.

Semmler, M., Kniesburges, S., Parchent, J., Jakubaß, B., Zimmermann, M., Bohr, C., ... & Döllinger, M. (2017). Endoscopic laser-based 3D imaging for functional voice diagnostics. Applied Sciences, 7(6), https://doi.org/ 10.3390/app7060600. DOI: https://doi.org/10.3390/app7060600

Sun, X., Dong, T., Bi, Y., Min, M., Shen, W., Xu, Y., & Liu, Y. (2016). Linked color imaging application for improving the endoscopic diagnosis accuracy: A pilot study. Scientific Reports, 6(1), https://doi.org/ 10.1038/srep33473. DOI: https://doi.org/10.1038/srep33473

Van Hese, L., De Vleeschouwer, S., Theys, T., Rex, S., Heeren, R. M., & Cuypers, E. (2022). The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumors. Discover Oncology, 13(1), 123. https://doi.org/ 10.1007/s12672-022-00585-z. DOI: https://doi.org/10.1007/s12672-022-00585-z

Sroka, R., & Lilge, L. (2016). Laser-advanced new methods for diagnostics and therapeutics. Photonics & Lasers in Medicine, 5(1), 1–4.https://doi.org/10.1515/plm-2015-0046. DOI: https://doi.org/10.1515/plm-2015-0046

Geoghegan, S. (2019). Lasers in medical diagnosis and therapy by Stephan Wieneke and Christoph Gerhard.https://doi.org/10.1007/s13246-019-00777. DOI: https://doi.org/10.1007/s13246-019-00777-y

Coda, S., Siersema, P. D., Stamp, G. W., & Thillainayagam, A. V. (2015). Biophotonic endoscopy: A review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endoscopy International Open, 3(05), E380–E392. https://doi.org/10.1055/s-0034-1392513. DOI: https://doi.org/10.1055/s-0034-1392513

Sroka, R., Stepp, H., Hennig, G., Brittenham, G. M., Rühm, A., & Lilge, L. (2015). Medical laser application: Translation into the clinics. Journal of Biomedical Optics, 20(6), 061110.https://doi.org/10.1117/1.JBO.20.6.061110. DOI: https://doi.org/10.1117/1.JBO.20.6.061110

Yun, S. H., & Kwok, S. J. (2017). Light in diagnosis, therapy, and surgery. Nature Biomedical Engineering, 1(1), 8.https://doi.org/10.1038/s41551-016-0008. DOI: https://doi.org/10.1038/s41551-016-0008

Mastropietro, A., Scano, A., & Rivolta, M. W. (2022). Applications of laser-induced fluorescence in medicine. Sensors, 22(8), 2956. https://doi.org/10.3390/s22082956. DOI: https://doi.org/10.3390/s22082956

Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine & Biology, 58(11), R37.https://doi.org/10.1088/0031-9155/58/11/R37. DOI: https://doi.org/10.1088/0031-9155/58/11/R37

Humar, M., & Yun, S. H. (2015). Intracellular microlasers. Nature Photonics, 9 (9), 572. https://doi.org/10.1038/nphoton.2015.129. DOI: https://doi.org/10.1038/nphoton.2015.129

Wang, T., Cheng, X., Xu, H., Meng, Y., Yin, Z., Li, X., & Hang, W. (2019). Perspective on advances in laser-based high-resolution mass spectrometry imaging. Analytical Chemistry, 92(1), 543–553. DOI: https://doi.org/10.1021/acs.analchem.9b04067

Zhang, G., Yang, S., Hu, P., & Deng, H. (2022). Advances and prospects of vision-based 3D shape measurement methods. Machines, 10(2), 124. DOI: https://doi.org/10.3390/machines10020124

Wang, Y. Y., Chen, L. Y., Xu, D. G., Shi, J., Feng, H., & Yao, J. Q. (2019). Advances in terahertz three-dimensional imaging techniques. Chinese Optics, 12(1), 1–18. DOI: https://doi.org/10.3788/co.20191201.0001

Stratakis, E., Ranella, A., Farsari, M., & Fotakis, C. (2009). Laser-based micro/nanoengineering for biological applications. Progress in Quantum Electronics, 33(5), 127–163. DOI: https://doi.org/10.1016/j.pquantelec.2009.06.001

Khonina, S. N., Kazanskiy, N. L., Skidanov, R. V., & Butt, M. A. (2025). Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview. Advanced Materials Technologies, 10(4), 2401028. DOI: https://doi.org/10.1002/admt.202401028

Gao, D., Ding, W., Nieto-Vesperinas, M., Ding, X., Rahman, M., Zhang, T., ... & Qiu, C. W. (2017). Optical manipulation from the microscale to the nanoscale: Fundamentals, advances, and prospects. Light: Science & Applications, 6(9), e17039. DOI: https://doi.org/10.1038/lsa.2017.39

Kut, C., Chaichana, K. L., Xi, J., Raza, S. M., Ye, X., McVeigh, E. R., ... & Li, X. (2015). Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Science Translational Medicine, 7(292), 292ra100. https://doi.org/10.1126/scitranslmed.3010611. DOI: https://doi.org/10.1126/scitranslmed.3010611

Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15(12), 747–756. https://doi.org/10.1038/nrc4015. DOI: https://doi.org/10.1038/nrc4015

Ming, K., Kim, J., Biondi, M. J., Syed, A., Chen, K., Lam, A., ... & Chan, W. C. (2015). Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano, 9(3), 3060–3074. https://doi.org/10.1021/nn5072792. DOI: https://doi.org/10.1021/nn5072792

Pritzker, K. P., & Nieminen, H. J. (2019). Needle biopsy adequacy in the era of precision medicine and value-based health care. Archives of Pathology & Laboratory Medicine, 143(11), 1399–1415.https://doi.org/10.5858/arpa.2018-0463-RA. DOI: https://doi.org/10.5858/arpa.2018-0463-RA

Hollon, T. C., Pandian, B., Adapa, A. R., Urias, E., Save, A. V., Khalsa, S. S. S., ... & Orringer, D. A. (2020). Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nature Medicine, 26(1), 52–58. https://doi.org/10.1038/s41591-019-0715-9. DOI: https://doi.org/10.1038/s41591-019-0715-9

Pogue, B. W. (2023). Perspective on the optics of medical imaging. Journal of Biomedical Optics, 28(12), 121208. DOI: https://doi.org/10.1117/1.JBO.28.12.121208

Boppart, S. A., & Richards-Kortum, R. (2014). Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Science Translational Medicine, 6(253), 253rv2. DOI: https://doi.org/10.1126/scitranslmed.3009725

Guida, S., Arginelli, F., Farnetani, F., Ciardo, S., Bertoni, L., Manfredini, M., ... & Pellacani, G. (2021). Clinical applications of in vivo and ex vivo confocal microscopy. Applied Sciences, 11(5), 1979.https://doi.org/10.3390/app11051979. DOI: https://doi.org/10.3390/app11051979

Deegan, A. J., Talebi-Liasi, F., Song, S., Li, Y., Xu, J., Men, S., ... & Wang, R. K. (2018). Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions. Lasers in Surgery and Medicine, 50(3), 183–193. https://doi.org/10.1002/lsm.22788. DOI: https://doi.org/10.1002/lsm.22788

Farooq, A., Alquaity, A. B., Raza, M., Nasir, E. F., Yao, S., & Ren, W. (2022). Laser sensors for energy systems and process industries: Perspectives and directions. Progress in Energy and Combustion Science, 91, 100997. DOI: https://doi.org/10.1016/j.pecs.2022.100997

Downloads

Published

2025-12-31

How to Cite

Hashimi, S. H., & Azizi, N. M. (2025). A Review of Recent Advances in Laser-Based Medical Imaging Techniques. Journal of Natural Science Review, 3(4), 310–325. https://doi.org/10.62810/jnsr.v3i4.220

Issue

Section

Articles