A Review of Recent Advances in Laser-Based Medical Imaging Techniques
DOI:
https://doi.org/10.62810/jnsr.v3i4.220Keywords:
Artificial Intelligence (AI), Femtosecond Lasers, Fluorescence Imaging, Laser Imaging, Medical Diagnostics, Photoacoustic ImagingAbstract
This review explores the recent advancements in laser-based medical imaging techniques, highlighting their significant contributions to modern diagnostic practices. Laser technologies, including fluorescence imaging, photoacoustic imaging, and femtosecond lasers, have revolutionized non-invasive medical imaging by offering high-resolution and precise visualization of biological structures and processes. These techniques not only enhance early disease detection, particularly cancers, but also support real-time guidance during surgeries, improving patient outcomes. Furthermore, the integration of artificial intelligence (AI) has further optimized diagnostic accuracy and analysis efficiency. Despite these advancements, challenges such as high equipment costs, the need for specialized training, and a lack of standardized protocols still hinder widespread adoption in clinical settings. This review discusses the ongoing innovations in laser-based imaging, the ethical considerations surrounding AI integration, and the potential for future developments, emphasizing the importance of continued research to maximize the benefits of these technologies for patient care.
Downloads
References
Kieffer, J. C., Krol, A., Jiang, Z., Chamberlain, C. C., Scalzetti, E., & Ichalalene, Z. (2016). Future of laser-based X-ray sources for medical imaging. Applied Physics B, 74(Suppl. 1), s75–s81. https://doi.org/ 10.1007/s00340-002-0870-3.
Megbuwawon, A., Singh, M. K., Akinniranye, R. D., Kanu, E. C., & Omenogor, C. E. (2024). Integrating artificial intelligence in medical imaging for precision therapy: The role of AI in segmentation, laser-guided procedures, and protective shielding. World Journal of Advanced Research and Reviews, 23(03), 1078–1096.
https://doi.org/ 10.30574/wjarr.2024.23.3.2751.
Semmler, M., Kniesburges, S., Parchent, J., Jakubaß, B., Zimmermann, M., Bohr, C., ... & Döllinger, M. (2017). Endoscopic laser-based 3D imaging for functional voice diagnostics. Applied Sciences, 7(6), https://doi.org/ 10.3390/app7060600.
Sun, X., Dong, T., Bi, Y., Min, M., Shen, W., Xu, Y., & Liu, Y. (2016). Linked color imaging application for improving the endoscopic diagnosis accuracy: A pilot study. Scientific Reports, 6(1), https://doi.org/ 10.1038/srep33473.
Van Hese, L., De Vleeschouwer, S., Theys, T., Rex, S., Heeren, R. M., & Cuypers, E. (2022). The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumors. Discover Oncology, 13(1), 123. https://doi.org/ 10.1007/s12672-022-00585-z.
Sroka, R., & Lilge, L. (2016). Laser-advanced new methods for diagnostics and therapeutics. Photonics & Lasers in Medicine, 5(1), 1–4.https://doi.org/10.1515/plm-2015-0046.
Geoghegan, S. (2019). Lasers in medical diagnosis and therapy by Stephan Wieneke and Christoph Gerhard.https://doi.org/10.1007/s13246-019-00777.
Coda, S., Siersema, P. D., Stamp, G. W., & Thillainayagam, A. V. (2015). Biophotonic endoscopy: A review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endoscopy International Open, 3(05), E380–E392. https://doi.org/10.1055/s-0034-1392513.
Sroka, R., Stepp, H., Hennig, G., Brittenham, G. M., Rühm, A., & Lilge, L. (2015). Medical laser application: Translation into the clinics. Journal of Biomedical Optics, 20(6), 061110.https://doi.org/10.1117/1.JBO.20.6.061110.
Yun, S. H., & Kwok, S. J. (2017). Light in diagnosis, therapy, and surgery. Nature Biomedical Engineering, 1(1), 8.https://doi.org/10.1038/s41551-016-0008.
Mastropietro, A., Scano, A., & Rivolta, M. W. (2022). Applications of laser-induced fluorescence in medicine. Sensors, 22(8), 2956. https://doi.org/10.3390/s22082956.
Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine & Biology, 58(11), R37.https://doi.org/10.1088/0031-9155/58/11/R37.
Humar, M., & Yun, S. H. (2015). Intracellular microlasers. Nature Photonics, 9 (9), 572. https://doi.org/10.1038/nphoton.2015.129.
Wang, T., Cheng, X., Xu, H., Meng, Y., Yin, Z., Li, X., & Hang, W. (2019). Perspective on advances in laser-based high-resolution mass spectrometry imaging. Analytical Chemistry, 92(1), 543–553.
Zhang, G., Yang, S., Hu, P., & Deng, H. (2022). Advances and prospects of vision-based 3D shape measurement methods. Machines, 10(2), 124.
Wang, Y. Y., Chen, L. Y., Xu, D. G., Shi, J., Feng, H., & Yao, J. Q. (2019). Advances in terahertz three-dimensional imaging techniques. Chinese Optics, 12(1), 1–18.
Stratakis, E., Ranella, A., Farsari, M., & Fotakis, C. (2009). Laser-based micro/nanoengineering for biological applications. Progress in Quantum Electronics, 33(5), 127–163.
Khonina, S. N., Kazanskiy, N. L., Skidanov, R. V., & Butt, M. A. (2025). Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview. Advanced Materials Technologies, 10(4), 2401028.
Gao, D., Ding, W., Nieto-Vesperinas, M., Ding, X., Rahman, M., Zhang, T., ... & Qiu, C. W. (2017). Optical manipulation from the microscale to the nanoscale: Fundamentals, advances, and prospects. Light: Science & Applications, 6(9), e17039.
Kut, C., Chaichana, K. L., Xi, J., Raza, S. M., Ye, X., McVeigh, E. R., ... & Li, X. (2015). Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Science Translational Medicine, 7(292), 292ra100. https://doi.org/10.1126/scitranslmed.3010611.
Friedman, A. A., Letai, A., Fisher, D. E., & Flaherty, K. T. (2015). Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer, 15(12), 747–756. https://doi.org/10.1038/nrc4015.
Ming, K., Kim, J., Biondi, M. J., Syed, A., Chen, K., Lam, A., ... & Chan, W. C. (2015). Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano, 9(3), 3060–3074. https://doi.org/10.1021/nn5072792.
Pritzker, K. P., & Nieminen, H. J. (2019). Needle biopsy adequacy in the era of precision medicine and value-based health care. Archives of Pathology & Laboratory Medicine, 143(11), 1399–1415.https://doi.org/10.5858/arpa.2018-0463-RA.
Hollon, T. C., Pandian, B., Adapa, A. R., Urias, E., Save, A. V., Khalsa, S. S. S., ... & Orringer, D. A. (2020). Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nature Medicine, 26(1), 52–58. https://doi.org/10.1038/s41591-019-0715-9.
Pogue, B. W. (2023). Perspective on the optics of medical imaging. Journal of Biomedical Optics, 28(12), 121208.
Boppart, S. A., & Richards-Kortum, R. (2014). Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Science Translational Medicine, 6(253), 253rv2.
Guida, S., Arginelli, F., Farnetani, F., Ciardo, S., Bertoni, L., Manfredini, M., ... & Pellacani, G. (2021). Clinical applications of in vivo and ex vivo confocal microscopy. Applied Sciences, 11(5), 1979.https://doi.org/10.3390/app11051979.
Deegan, A. J., Talebi-Liasi, F., Song, S., Li, Y., Xu, J., Men, S., ... & Wang, R. K. (2018). Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions. Lasers in Surgery and Medicine, 50(3), 183–193. https://doi.org/10.1002/lsm.22788.
Farooq, A., Alquaity, A. B., Raza, M., Nasir, E. F., Yao, S., & Ren, W. (2022). Laser sensors for energy systems and process industries: Perspectives and directions. Progress in Energy and Combustion Science, 91, 100997.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sayed Habibullah Hashimi, Noor Mohammad Azizi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







