Molecular Characteristics for Identification of Fusarium Oxysporum Associated with Tomato Infection

Authors

  • Aliyu Isa Department of Biotechnology, Faculty of Life Sciences, University of Maiduguri, Borno State – Nigeria
  • Aisha Issa Nigerian Institute of Medical Research P.M.B, Maiduguri Borno State
  • Rabia Ayoubi Department of Pharmacognosy, Faculty of Pharmacy, Kabul University, Afghanistan
  • Jyoti Taunk Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India

DOI:

https://doi.org/10.62810/jnsr.v2iSpecial.Issue.129

Keywords:

Fusarium Oxysporum, Tomato, Potato Dextrose Agar, EF-1α primers, IGS-RFLP, Wilt

Abstract

This study aims to determine a suitable molecular identification technique for Fusarium oxysporum associated with tomato infections to enhance tomato production in developing countries. Solanum lycopersicum (tomato) is one of the most important vegetables worldwide and ranks as the sixth most popular vegetable, according to the Food and Agriculture Organization (FAO). However, its cultivation is significantly affected by pathogens, including F. oxysporum. The most suitable medium for cultivating F. oxysporum was found to be Potato Dextrose Agar (PDA). Cell disruption using bead beating in a homogenizer yielded optimal results. EF-1α primers were identified as the most appropriate to detect Fusarium isolates within species complexes, as corroborated by various researchers. Intergenic spacer restriction fragment length polymorphism (IGS-RFLP) analysis was widely used to trace the origin of F. oxysporum by analyzing genetic similarities among isolates from different sources. Other methods, such as random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), allele-specific associated primer (ASAP), single nucleotide polymorphism (SNP), and variable number tandem repeat (VNTR) analysis have also been applied. To mitigate fungal infections in tomatoes, this study recommends selecting disease-resistant tomato varieties, maintaining ideal growing conditions, adhering to stringent sanitation practices, ensuring source water is free of potential fungal pathogens, sterilizing tomato seeds, and using organic fungicides as needed.

Downloads

Download data is not yet available.

References

Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar, 5(2), 74-81. DOI: https://doi.org/10.5943/ppq/5/2/6

Abu Bakar A.I., Nur Ain Izzati M.Z., Umi Kalsom Y. 2013. Diversity of Fusarium species associated with post-harvest fruit rot disease of tomato. Sains Malaysiana 42 (7): 911– 920.

Akbar A, Hussain S, Ullah K, Fahim M, Ali GS (2018) Detection, virulence and genetic diversity of Fusarium species infecting tomatoin Northern Pakistan.PLoS ONE 13(9). DOI: https://doi.org/10.1371/journal.pone.0203613

Anonymous - National Horticulture Board, Ministry of Agriculture, 2014, Government of India 85, Institutional Area, Sector-18, Gurgaon-122 015 India

Apodaca SMA, Zavaleta ME, Osada KS, García ER, Valenzuela UJG (2004). Hospedantes asintomáticos de Fusarium oxysporum Schlechtend. f. sp. radicis-lycopersici W.R. Jarvis y Shoemaker en Sinaloa, México. Revista Mexicana de Fitopatología 22:7-13.

Ara, N., Bashar, M. K, Begum, S. and Kakon, S. S., 2007, Effect of spacing and stem pruning on the growth and yield of tomato. Int. J. Sustain. Crop Prod., 2: 35-39.

Borrero, C., Trillas, M.I., Ordovas, J., Tello, J.C., Aviles, M. (2004) Predictive factors for the suppression of fusarium wilt of tomato in plant growth media, Phytopathology, 94(10): 1094-1101. DOI: https://doi.org/10.1094/PHYTO.2004.94.10.1094

Budak H, Shearman RC, Gaussoin RE, Dweikat I (2004) Application of sequence-related amplified polymorphism markers for characterization of Turfgrass species. HortScience HortSci, 39(5), 955-958 DOI: https://doi.org/10.21273/HORTSCI.39.5.955

Chohan TZ, Ahmad S., (2008). An assessment of tomato production practices in Danna Katchely, Azad Jammu Kashmir. Pak J Life Soc Sci. 6:96–102.

De Coninck, B., Timmermans, P., Vos, C., Cammue, B. P., & Kazan, K. (2015). What lies beneath: belowground defense strategies in plants. Trends in plant science, 20(2), 91-101. DOI: https://doi.org/10.1016/j.tplants.2014.09.007

Deepa, N., & Sreenivasa, M. Y. (2019). Molecular methods and key genes targeted for the detection of fumonisin producing Fusarium verticillioides–An updated review. Food Bioscience, 32, 100473. HortScience 39:955–958 DOI: https://doi.org/10.1016/j.fbio.2019.100473

De Vries, S., Stukenbrock, E.H., Rose, L.E., 2020. Rapid evolution in plant–microbe interactions – an evolutionary genomics perspective. New Phytol. 226, 1256–1262. DOI: https://doi.org/10.1111/nph.16458

Edel-Hermann, V., & Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512-530. DOI: https://doi.org/10.1094/PHYTO-08-18-0320-RVW

Food and Agricultural Organization of the United Nations, FAO. (2010). FAOSTAT. Retrieved from: http://faostat.fao.org/.

Gordon, T.R., Okamoto, D. and Milgroom, M.G. (1997) The structure and interrelationship of fungal populations in native and cultivated soils. Mol. Ecol. 1, 241^249. DOI: https://doi.org/10.1111/j.1365-294X.1992.tb00183.x

Guo, L., Yang, Y., Yang, L., Wang, F., Wang, G., & Huang, J. (2016). Functional analysis of the G-protein α subunits FGA1 and FGA3 in the banana pathogen Fusarium oxysporum f. sp. cubense. Physiological and Molecular Plant Pathology, 94, 75-82. DOI: https://doi.org/10.1016/j.pmpp.2016.04.003

Gupta VP, Bochow H, Dolej S, Fischer I., (2000) Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt; 107 (2):145–54.

Gupta S, Srivastava M, Mishra G, Naik P, Chauhan R, Tiwari S.(2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. African Journal of Biotechnology.;7(23).

Hariprasad, P., Navya, H. M., Chandra Nayaka, S. & Niranjana, S. R. (2009), Advantage of PSIRB over PSRB and IRB to improve plant health of tomato. Biol. Cont. 50, 307– 316. DOI: https://doi.org/10.1016/j.biocontrol.2009.04.002

Inami K, Kashiwa T, Kawabe M, Onokubo-Okabe A, Ishikawa N, Pérez RE, Arie T (2014). The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with non-pathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments 29:200-210. DOI: https://doi.org/10.1264/jsme2.ME13184

Isaac, M. R., Leyva-Mir, S. G., Sahagun-Castellanos, J., Camara-Correia, K., Tovar-Pedraza, J. M., & Rodriguez-Perez, J. E. (2018). Occurrence, identification, and pathogenicity of Fusarium spp. associated with tomato wilt in Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 484-493. DOI: https://doi.org/10.15835/nbha46211095

Katan T, Zamir D, Sarfati M, Katan J. (1991) Vegetative compatibility groups and subgroups in Fusarium oxysporum f. sp. radicislycopersici. Phytopathology 81:255–262. DOI: https://doi.org/10.1094/Phyto-81-255

Lagopodi, A. L., Ram, A. F., Lamers, G. E., Punt, P. J., Van den Hondel, C. A., Lugtenberg, B. J., & Bloemberg, G. V. (2002). Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Molecular Plant-Microbe Interactions, 15(2), 172-179. DOI: https://doi.org/10.1094/MPMI.2002.15.2.172

Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003). Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol. Ecol. 12: 609618. DOI: https://doi.org/10.1046/j.1365-294X.2003.01756.x

Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and applied genetics, 103, 455-461. DOI: https://doi.org/10.1007/s001220100570

Li P, Cao S, Dai Y, Li X, Xu D, Guo M, (2012);. Genetic diversity of Phytophthora capsici (Pythiaceae) isolates in Anhui Province of China based on ISSR-PCR markers. Genet Mol Res. 17.4 PMID: 23315808 DOI: https://doi.org/10.4238/2012.December.17.4

Liu, Y., Wisniewski, M., Kennedy, J. F., Jiang, Y., Tang, J., & Liu, J. (2016). Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydrate Polymers, 151, 474-479. DOI: https://doi.org/10.1016/j.carbpol.2016.05.103

Ma, L. J., Van Der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., ...& Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367-373. DOI: https://doi.org/10.1038/nature08850

Medić-Pap, S., Tančić-Živanov, S., Danojević, D., Ignjatov, M., Ilić, A., Glogovac, S., & Gvozdanović-Varga, J. (2022). Seedborne fungi on stored onion seeds. Zbornik Matice srpske za prirodne nauke, 143, 39-52. DOI: https://doi.org/10.2298/ZMSPN2243039M

Murad, N. B. A., Kusai, N. A., & Zainudin, N. A. I. M. (2016). Identification and diversity of Fusarium species isolated from tomato fruits. Journal of Plant Protection Research, 56(3). DOI: https://doi.org/10.1515/jppr-2016-0032

Nag, P., Paul, S., Shriti, S., & Das, S. (2022). Defence response in plants and animals against a common fungal pathogen, Fusarium oxysporum. Current Research in Microbial Sciences, 100135. DOI: https://doi.org/10.1016/j.crmicr.2022.100135

Nahalkova, J., Fatehi, J., Olivain, C., & Alabouvette, C. (2010). Tomato root colonization by fluorescent-tagged pathogenic and protective strains of Fusarium oxysporum in hydroponic culture differs from root colonization in soil. FEMS microbiology letters, 286(2), 152-157. DOI: https://doi.org/10.1111/j.1574-6968.2008.01241.x

Nirmaladevi D. (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. Lycopersici. Scientific Report, 6:21367, 2 DOI: https://doi.org/10.1038/srep21367

O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., ... & Sarver, B. A. (2009). A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology, 46(12), 936-948. DOI: https://doi.org/10.1016/j.fgb.2009.08.006

Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., L'Haridon, F., & Alabouvette, C. (2006). Colonization of tomato root by pathogenic and non-pathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Applied and environmental microbiology, 72(2), 1523-1531. DOI: https://doi.org/10.1128/AEM.72.2.1523-1531.2006

Onyekachukwu O. Akaeze Adefoyeke O., Aduramigba-Modupe (2017), fusarium wilt disease of tomato: screening for resistance and in-vitro evaluation of botanicals for control; the Nigeria case. Journal of Microbiology, Biotechnology and food science, 7 (1) 32-36, 1- 2 DOI: https://doi.org/10.15414/jmbfs.2017.7.1.32-36

Pareek, M., & Rajam, M. V. (2017). RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal biology, 121(9), 775-784. DOI: https://doi.org/10.1016/j.funbio.2017.05.005

Peter, K. V. And Rai, B., 1976, Stability parameters of genotype x environment interaction in tomato. Ind. J. Agri. Sci., 46: 395-398.

Prasad, V. S. R. And Mathura Rai, 1999, Genetic variability, components association and direct and indirect selection in some exotic tomato germplasm. Indian J. Hort., 56 (3) : 262-266.

Rep, M., & Kistler, H. C. (2010). The genomic organization of plant pathogenicity in Fusarium species. Current opinion in plant biology, 13(4), 420-426. DOI: https://doi.org/10.1016/j.pbi.2010.04.004

Sandani H. B. P. and Weerahewa H. L. D. (2018), wilt diseases of tomato (lycopersicum esculentum) and chilli (capsium annum) and their management strategies. Sri Lankan J. Biol. 2018, 3 (2): 24-43 DOI: https://doi.org/10.4038/sljb.v3i2.24

Sato T, Yoshida T, Saito T, Sakata Y, Matsunaga H, Monma S (2004) Development of a new rootstock eggplant cultivar “Daizaburou” with high resistance to bacterial wilt and Fusarium wilt. Bull Natl Inst Veg Tea Sci 3:199–211

Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823 DOI: https://doi.org/10.1094/MPMI.1998.11.8.815

Upasani, M. L., Gurjar, G. S., Kadoo, N. Y., & Gupta, V. S. (2016). Dynamics of colonization and expression of pathogenicity related genes in Fusarium oxysporum f. sp. ciceri during chickpea vascular wilt disease progression. PLoS One, 11(5), e0156490. DOI: https://doi.org/10.1371/journal.pone.0156490

Zhang, Y., Yang, H., Turra, D., Zhou, S., Ayhan, D. H., DeIulio, G. A., Guo, L., Broz, K., Wiederhold, N., Coleman, J. J., Donnell, K. O., Youngster, I., McAdam, A. J., Savinov, S., Shea, T., Young, S., Zeng, Q., Rep, M., Pearlman, E., Schwartz, D. C., Di Pietro, A., Kistler, H. C., Ma, L. J. (2020) The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Commun Biol, 3(1):50. DOI: https://doi.org/10.1038/s42003-020-0770-2

Downloads

Published

2024-11-23

How to Cite

Isa, A., Issa, A., Ayoubi, R., & Taunk, J. (2024). Molecular Characteristics for Identification of Fusarium Oxysporum Associated with Tomato Infection. Journal of Natural Science Review, 2(Special.Issue), 265–275. https://doi.org/10.62810/jnsr.v2iSpecial.Issue.129