The Effect of Melatonin on Essential Oil Production in Mentha Spicata

Authors

  • Rabia Ayoubi Department of Pharmacognosy, Faculty of Pharmacy, Kabul University
  • Gyanesh Singh Lovely Professional University, School of Bioengineering and Biosciences
  • Devendra Kumar Pandey Lovely Professional University, School of Bioengineering and Biosciences

DOI:

https://doi.org/10.62810/jnsr.v2i2.43

Keywords:

Mentha spicata, Essential Oil, Melatonin, GC, India

Abstract

Mentha Spicata (spearmint), an herbaceous perennial aromatic plant, is the most common herb in tropical and subtropical countries. The essential oil (EO) of Mentha spicata is a valuable source of antioxidants in nutraceuticals and cosmetic industries. In-vitro culturing of Mentha Spicata was done via the micro-propagation technique, and exogenous Mel was used as a plant growth regulator. The field trials involved the plant’s foliar spray of different concentrations of Mel at various time points. The EO of leaves of control and Mel-treated plants (S1-S6) was steam-distilled using a Clavenger-type apparatus. The UV, FTIR, and GC analyses of the EO of control and S1-S6 were recorded. The antioxidant capacity of the EO of control and S1-S6 was measured using a DPPH (1, 1-diphenyl-2-picrylhydrazyl) assay. The nodal explants of Mentha Spicata showed different responses to the shoot proliferation process in the presence of exogenous Mel. The EO yield percentage of control and S1-S6 were in the range of 0.92±0.05% and 0.74±0.03%-0.39±0.04%%, respectively. The UV, FTIR, and GC spectra of the EO of control and S1-S6 presented different numbers of peaks and compounds in the selected range. The EO of control and Mel-treated plants could reduce the free radical DPPH to DPPHH with varying values of IC50. Melatonin could regulate the plant’s growth and development, change the EO yield, improve the EO’s phytochemical profile qualitatively, and enhance the free-radical scavenging capacity of the plant’s EO in a concentration and time-dependent mode. So, it may act as a promising molecule to increase aromatic crop yield with the desired quality.

Downloads

Download data is not yet available.

References

Abdel-Hameed, E.-S. S., Salman, M. S., Fadl, M. A., Elkhateeb, A., & El-Awady, M. A. (2018). Chemical Composition of Hydrodistillation and Solvent Free Microwave Extraction of Essential Oils from Mentha Piperita L. Growing in Taif, Kingdom of Saudi Arabia, and their Anticancer and Antimicrobial Activity. ORIENTAL JOURNAL OF CHEMISTRY, 34(1), 222-233. http://dx.doi.org/10.13005/ojc/340125 DOI: https://doi.org/10.13005/ojc/340125

Ammar, S. S., Kouidri, M., Bellik, Y., & Amrane, A. A. (2018). Chemical Composition, Antioxidant and In vitro Antibacterial Activities of Essential Oils of Mentha spicata Leaf from Tiaret Area (Algeria). Dhaka University Journal of Pharmaceutical Sciences, 17(1), 87. http://10.3329/dujps.v17i1.37123 DOI: https://doi.org/10.3329/dujps.v17i1.37123

Arnao, M. B., & Hernandez-Ruiz, J. (2018). Melatonin: A new plant hormone and/or a plant master regulator?,. Trends in Plant Science, 24(1), 38- 48. https://doi.org/10.1016/j.tplants.2018.10.010 DOI: https://doi.org/10.1016/j.tplants.2018.10.010

Arnao, M., & Hernández-Ruiz, J. (2014). Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19(12), 789- 97. https://doi.org/10.1016/j.tplants.2014.07.006 DOI: https://doi.org/10.1016/j.tplants.2014.07.006

Bhatia, S. (2015). Plant Tissue Culture. In S. Bhatia, K. Sharma, R. Dahiya, & T. Bera, Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 31-107). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-802221-4.00002-9

Chaturvedi, T., Kumar, A., Kumar, A., Verma, R., Padalia, R., Sundaresan, V., et al. (2018). Chemical composition, genetic diversity, antibacterial, antifungal and antioxidant activities of camphor-basil (Ocimum kilimandscharicum Guerke). Industrial Crops and Products, 118, 246- 258. https://doi.org/10.1016/j.indcrop.2018.03.050 DOI: https://doi.org/10.1016/j.indcrop.2018.03.050

Coskun, Y., Duran, R. E., & kılıç, S. (2019). Striking effects of melatonin on secondary metabolites produced by callus culture of rosemary (Rosmarinus officinalis L.). Plant Cell Tissue and Organ, 138(1), 89-95. http://10.1007/s11240-019-01605-7 DOI: https://doi.org/10.1007/s11240-019-01605-7

Fazili, M. A., Bashir, I., Ahmad, M., Yaqoob, U., & Geelani, S. N. (2022). In vitro strategies for the enhancement of secondary metabolite production in plants: a review. Bull Natl Res Cent, 46(1), 35. http://10.1186/s42269-022-00717-z DOI: https://doi.org/10.1186/s42269-022-00717-z

Fejéra, J., Gruľováa, D., Feob, V. D., Ürgeovác, E., Obertd, B., & Preťovác, A. (2018, 2). Mentha × piperita L. nodal segments cultures and their essential oil production. Industrial Crops and Products, 112, 550-555. https://doi.org/10.1016/j.indcrop.2017.12.055 DOI: https://doi.org/10.1016/j.indcrop.2017.12.055

Figueiredo, A. C., Barroso, J. G., Pedro1, L. G., & Scheffer, J. J. (2008). Factors affecting secondary metabolite production inplants: volatile components and essential oils. Flavour and Fragrance Journal, 23(4), 213-226. https://doi.org/10.1002/ffj.1875 DOI: https://doi.org/10.1002/ffj.1875

Ghanti, K., Kaviraj, C. P., Venugopal, R. B., Jabeen , F. T., & Rao, S. (2004). Rapid regeneration of Mentha piperita L. from shoot tip and nodal explants. Indian Journal of Biotechnology, 3, 594-598. https://api.semanticscholar.org/CorpusID:88670136

Hussein, N., Hussein, K., Sadkhan, A. K., & Al-Nuwab, M. A. (2019). Characterization of Some Natural Oils Used for Medical Purposes by Ultraviolet – Visible spectroscopy. journal of the college of basic education, 25(105), 36-44. DOI: 10.35950/cbej.v25i105.4753 DOI: https://doi.org/10.35950/cbej.v25i105.4753

Islam, A. T., Islam, M. M., & Alam, M. F. (2017). Rapid in vitro Clonal Propagation of Herbal Spice, Mentha piperita L. Using Shoot Tip and Nodal Explants. Research in Plant Sciences, 5(1), 43-50. DOI: 10.12691/plant-5-1-5

Kachhap, K., Sharma, P., Misra, M., & Misra , A. N. (2018). Modulation of callus induction and growth by 2, 4-d from leaf explants of Ocimum Sanctum (L.). Journal of Pharmacognosy and Phytochemistry, 1, 2091-2092. https://www.phytojournal.com/archives/2018/vol7issue1S/PartAE/SP-7-1-619.pdf

Martínez-Medina, A., Fernandez, I., Lok, G. B., Pozo, M. J., Pieterse, C. M., & Wees, S. C. (2017). Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytplpgist, 213(3), 1363-1377. https://doi.org/10.1111/nph.14251 DOI: https://doi.org/10.1111/nph.14251

Nafea, S. M., & Abdulfatah, H. K. (2014, 1). Effect of Foliar application of GA3 and NAA for reducing alternate bearing of olive trees (Olea europaea L. cv.Ashrasie). Journal of Agriculture and Veterinary Science, 7(1), 08-12. DOI: 10.9790/2380-07110812 DOI: https://doi.org/10.9790/2380-07110812

Pagare, S., Bhatia, M., Tripathi, N., Pagare , S., & Bansal, Y. K. (2015, 7). Secondary Metabolites of Plants and their Role:Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304. https://www.researchgate.net/publication/283132113_Secondary_metabolites_of_plants_and_their_role_Overview

Riaz, H. R., Hashmi, S. S., Khan, T., Hano, C., Giglioli-Guivarc’h, N., & Abbasi, B. H. (2018). Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Alba. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 936-950. DOI: 10.1080/21691401.2018.1473413 DOI: https://doi.org/10.1080/21691401.2018.1473413

Sarrou, E., Chatzopoulou, P., Dimassi-Theriou, K., Therios, I., & Koularmani, A. (2015). Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. Journal of Essential Oil Research, 27(6), 487–496. https://doi.org/10.1080/10412905.2015.1064485 DOI: https://doi.org/10.1080/10412905.2015.1064485

Snoussi, M., Noumi,, E., Trabelsi, N., Flamini, G., Papetti,, A., & Feo, V. D. (2015). Mentha spicata Essential Oil: Chemical Composition, Antioxidant and Antibacterial Activities against Planktonic and Biofilm Cultures of Vibrio spp. Strains. Molecules, 20(8), 14402–14424. doi: 10.3390/molecules200814402 DOI: https://doi.org/10.3390/molecules200814402

Socaciu, M. I., Fetea, F., Rotar, A. M., & Melinda, F. (2017). Characterization of essential oils extracted from different aromatic plants by FTIR spectroscopy. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Food Science and Technology, 74(1). DOI: 10.15835/buasvmcn-fst:12634 DOI: https://doi.org/10.15835/buasvmcn-fst:12634

Sun, Q., Zhang, N., Wang, J., Cao, Y., Lo, X., Zhang, H., et al. (2016, January 28). A label‐free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research, 61(2), 138-53. DOI: 10.1111/jpi.12315 DOI: https://doi.org/10.1111/jpi.12315

Tafrihi, M., Imran, M., Atanassov, L., Gondal, T. A., Caruso, G., Sharma, S., et al. (2021). The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules., 26(4), 1118. doi: 10.3390/molecules26041118 DOI: https://doi.org/10.3390/molecules26041118

Tan, D., Manchester, L., Esteban-Zubero, E., Zhou, Z., & Reiter, R. (2015). Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules, 20(10), 18886- 906. https://doi.org/10.3390/molecules201018886 DOI: https://doi.org/10.3390/molecules201018886

Wallace, R. J. (2004). Antimicrobial properties of plant secondary metabolites. Proceedings of the Nutrition Society, 63, 621-629. doi: 10.1079/pns2004393. DOI: https://doi.org/10.1079/PNS2004393

Wang, P., Yin, L., Liang, D., Li, C., Ma, F., & Yue, Z. (2012). Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res, 53(1), 1-20. doi: 10.1111/j.1600-079X.2011.00966.x. DOI: https://doi.org/10.1111/j.1600-079X.2011.00966.x

Downloads

Published

2024-06-29

Issue

Section

Articles